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Chapter 1

Introduction

1.1 Motivations

The Internet is growing fast, and more and more people can access it by the day;
companies all around the globe have long begun to exploit it as the biggest marketplace
in the world. One of the largest associated business trends is the gathering of all kinds
of data about how people use it and what they do with it. Such data is valuable
since it can be used, for example, by content providers to adapt and streamline their
offerings depending on the customer. As storage is becoming cheaper, companies will
often aggressively collect all kinds of web-generated data before even considering what
they might want to do with it.

Due to the Internet’s massive scale and the systematic nature of this data gathering,
companies quickly find themselves with gargantuan quantities of data, which they need
to analyze to get something out of it. High-performance parallel computing is needed
to do such analysis in reasonable time.

Traditionally, such tasks were accomplished using large and expensive parallel su-
percomputers. Nowadays, with the size of the data exploding, the cost of acquiring and
operating these machines is becoming prohibitive, especially in light of the high level of
parallelism desired. The industry, led by Google [9], has thus started to adopt so-called
shared-nothing architectures, often as clusters of “commodity” computers. Such systems
are cheap to build, and offer almost unlimited scalability for data-parallel problems with
very large quantities of data.

In order to exploit these clusters for this very-large-scale business data analysis, it is
desirable to have clustering platforms to help scatter the data-parallel programs across
them. Google’s MapReduce [9] is one such platform, providing a simple, low-level
programming model for data-parallel programs, and a corresponding runtime engine
for running them in a highly scalable way. Along with its clones, it currently dominates
the very-large-scale computing market. Dryad [17] from Microsoft Research is another
such system providing an even lower-level programming model, but is currently only
used internally at Microsoft.

Engineers and users quickly identified the need for higher-level languages to help
them write programs for these platforms. Pig Latin [20] is one such programming lan-
guage designed for ad-hoc data processing, currently targeting the open-source MapRe-
duce clone Apache Hadoop [12].

1



CHAPTER 1. INTRODUCTION 2

1.2 Problem statement

While MapReduce-like systems have become highly popular because of their open-
source implementations, we believe that, being initially designed to be programmed by
humans, they are unsuitable for this use as targets for high-level languages. The goal
of this thesis is to investigate the limitations of MapReduce with respect to that, see
how practical systems work around these limitations, and how they can be lifted by
the use of a more general programming model like that of Dryad.

We contribute answers to these questions, and provide an argumentation against the
MapReduce model, backed by small-scale experimental data. To that end, we use the
Pig Latin language and its implementation as a basis for analysis and experimentation.
As a side effect, we also contribute a solution to the following problem from the Pig
Latin call for Academic Student Projects [22]:

Investigate a new backend system to Pig (e.g. a Dryad-like system), with a
corresponding compiler to run Pig Latin on the new backend.

Finally, in the conclusion of this document, we lay out the basic idea for another
possible programming model inspired by both MapReduce and Dryad, motivated by
the knowledge acquired during the course of this thesis.

1.3 Thesis structure

This thesis is separated into two parts. The first part provides the necessary background
information. Chapter 2 provides relevant background from the parallel and distributed
computing landscape. Chapter 3 provides background on dataflow programming, the
programming model underlying MapReduce, Pig Latin and Dryad. Finally, Chapter
4 details the MapReduce model and its implementation, and Chapter 5 presents the
Pig Latin language and outlines the current status and limitations of its compilation
to MapReduce.

The second part contains our contributions. Chapter 6 describes Naiad, our im-
plementation of a Dryad-like system for experimental purposes, as well as our Pig
Latin compiler targeting it. To fuel our argumentation with practical cases, Chapter
7 outlines different algorithms for the relational join operation, common of Pig Latin
programs, and possible implementation over MapReduce and Naiad. Finally, Chap-
ter 8 contains our main contributions, providing our argumentation and experimental
results.



Part I

Background
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Chapter 2

Parallel & distributed computing

Parallel and distributed computing have become an important trend and research area
in computer science. By parallel we mean programs whose performance can be increased
by running simultaneously on multiple processors; distributed adds the idea of loose
coupling between these processors.

Multiple reasons can be found for this new found importance. Among the most often
cited is the fact that Moore’s law no longer applies, roughly meaning that individual
processors produced by the industry no longer become exponentially faster with each
generation, implying the need to use multiple processors in parallel to “keep up”.

Another reason that is more relevant to this thesis is that, due to the rise of the
Internet, the amount of data that we want to analyze with computers seems to grow
even faster than Moore’s law. Is it thus becoming impossible to manage such masses
of data using increasingly powerful single computers; we need computer systems that
can be scaled with the data, which is made possible through parallel and distributed
computing.

This chapter presents some of the parallel and distributed computing landscape
relevant to the rest of the thesis.

2.1 Parallel architectures

Parallel computing imply the use of hardware architectures with multiple processors
that can operate simultaneously. These architectures are often classified according to
which resources are common to, or shared between the processors in the machine (also
implying which resources beside processors are multiplied, i.e. not shared). This clas-
sification is especially relevant when discussing parallel database and data processing
systems [25].

2.1.1 Shared-memory

Shared-memory computers, which include most commodity desktop computers nowa-
days, use multiple tightly-coupled processors that share the same main-memory (as well
as all other resources, like secondary storage, network access, etc...). A single instance
of an operating system runs on the computer and manages the assignment of processes
or tasks to processors. Programming it for parallel execution requires managing the
contention of access to these shared resources.

4



CHAPTER 2. PARALLEL & DISTRIBUTED COMPUTING 5

Such architectures are most efficient for relatively small parallel problems, as tight
coupling between processors means fast data exchange between them and high utiliza-
tion of the computer’s resources, given that contention issues are managed properly.

Figure 2.1: Shared-memory ar-
chitecture

Cheaper commodity machines use a single mem-
ory bank shared between their processors; an archi-
tecture called Symmetric Multi-Processing (SMP).
In order to lessen the interference of memory ac-
cess contention, larger-scale machines such as shared-
memory supercomputers use more complex memory
schemes; an architecture called Non-Uniform Mem-
ory Access (NUMA). In such a system, each proces-
sor has fast access to its own memory bank, and data
can be exchanged between banks by special high-
speed interconnects.

The downside of these systems for larger prob-
lems is that they do not scale well, especially from a
cost point of view. Adding processors increases re-
source contention, and has a limit above which all the
hardware must be changed to accommodate them. In
a NUMA system, more processors means more ad-
vanced and expensive interconnects. As a result, large shared-memory supercomputers
have prohibitive costs, and are only used when this tight coupling is absolutely nec-
essary to achieve good performance (e.g. typically for large-scale physical simulations
such as weather forecasting).

2.1.2 Shared-disk

In a shared-disk architecture, multiple computers, each with its own memory and pro-
cessor, are connected to one another in a LAN (local area network). Additionally, each
is connected to a shared secondary storage system, i.e. the “disk” (see fig. 2.2). Each
computer runs its own instance of an operating system, and accesses the shared disk
as if it were connected locally. Such a parallel system made from loosely coupled com-
puters is called a computer cluster ; individual machines within a cluster are sometimes
referred to as nodes.

Parallel programming requires managing contention of access to the disk (usually
automated in some measure by the disk itself), and network communications between
individual computers. Usually, an instance of the program will run on each computer;
these instances coordinate themselves through the LAN, and use the shared disk for
loading input and storing output data. Often, at least one of these instances is con-
sidered the master, and acts as a central authority for coordination and the division of
labor.

Such architectures are much less costly to scale than shared-memory systems, as
one can easily add a new computer to obtain increased performance, provided that
the software is written with the ability to take advantage of additional computers. Of
course, there is still the issue that adding more computers might increase disk access
contention and the need for storage space. However, such shared disks are usually
complex networks themselves that can be scaled up separately to increase capacity and
availability.
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Figure 2.2: Shared-disk architecture

Figure 2.3: Shared-nothing architecture

Though here separated from shared-memory systems, it should be noted that both
architectures are not mutually exclusive. In fact, the biggest supercomputers nowadays
use a hybrid of the two in order to alleviate the scaling problem of shared-memory
systems that we mentioned earlier. Such systems are made from a number of shared-
memory subsystems connected together in a shared-disk architecture.

2.1.3 Shared-nothing

Of most recent usage are so-called shared-nothing architectures, comprised of com-
pletely independent computers, each with its own processor, memory and disk, con-
nected together in a local area network, thus forming a cluster (fig. 2.3). Programming
them is essentially similar as with shared-disk systems, except with respect to storage.
Usually, the computers and LAN themselves act as a shared disk, with each partici-
pating machine contributing its own storage space to the whole. To that end, a special
program called a distributed filesystem (DFS ) runs on every machine.

This adds an important new aspect to consider when programming the system:
that of partitioning. Unlike a shared-disk system in which each computer has equal
access to all the data, now each computer as privileged access to data in its own disk,
and much slower access to the rest, being limited by the relatively slow LAN. It is thus
very important to control where different parts of the data reside, in order to assign
labor in a way that minimizes the amount to be transferred over the LAN.
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Discussion The reason why the industry is currently switching to shared-nothing
architectures is because they scale the best. Assuming software that can take good
advantage of these architectures, obtaining a more powerful system is as simple as
plugging in additional hardware; the cost of the system scales almost linearly with its
processing capacity. However, they can be considered the most difficult to program, as
one needs to handle LAN coordination, data partitioning, the DFS, and failure handling
issues which become increasingly common when adding computers. For this reason, it
is highly desirable to create programming models that allow writing efficient programs
while making abstraction of these issues. This idea is central to the rest of this thesis.

2.2 Parallel programming

We have outlined different kinds of hardware parallel architectures, and stated how
they were difficult to program. In this section, we delve a little deeper into this issue.
We first discuss the simpler parallelism issues associated with shared-memory systems
and writing parallel programs in general. We then move on to more complex issues
associated with writing parallel programs for clustered systems, i.e. shared-disk and
shared-nothing architectures.

2.2.1 Explicit versus implicit parallelism

The most traditional way of writing parallel programs for shared-memory machines is
to add explicit parallelizing instructions to the code. Examples of such instructions
include instructions for creating new tasks/processes/threads to be run in parallel,
and instructions to perform synchronization and communication between them. This
practice is known as explicit parallelism.

Writing and debugging software using explicit parallelism is known as an extremely
difficult and error-prone task, which is why many attempts have been made to take
that difficulty away from the programmer.

Some compilers (e.g. for C/C++: [8, 15]) try to identify what parts of the code
can be parallelized automatically ; however, this is very hard to do accurately for im-
perative programming languages. As a result, there is interest in expressing programs
in ways that make the potentially parallel parts of the system more obvious to detect
by compilers; this is known as implicit parallelism. For example, in a purely functional
programming language, all data dependence can be known at compile time; thus, in-
dependent computations can be run in parallel.

The problem does not end there however, as the compiler or runtime environment
would then have to figure out what computations are worth parallelizing. This is non-
trivial, especially in a clustered environment where the cost of scheduling work to a
distant machine might be far from negligible.

2.2.2 Explicit versus implicit clustering

Purely explicit clustering is nothing more than the practice of writing networked ap-
plications. This requires programmers to manage complex issues like networking, fail-
ure handling, load balancing, and more. This approach is thus seldom used in high-
performance computing contexts, where these issues are especially important. Instead,
most computer clusters are managed using specialized software that can make some
parts of this process implicit.
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Clustering & task parallelism

The simplest clustering frameworks consist of a set of tools and mechanisms for schedul-
ing independent jobs onto different machines of the cluster. Tasks are submitted glob-
ally to the system, which then assigns them to physical machines, using some load
balancing scheme to distribute the work among them. These system exploit task-level
parallelism: separate, independent tasks can be run in parallel.

Additionally, these systems often provide so-called message passing libraries, which
let programmers write parallel programs that can spread across the cluster. The pro-
grammer then has to write explicitly parallel code, using the system’s message passing
facilities to provide synchronization and communication among the concurrently run-
ning parts of his program.

Operating system-level tools have been devised to abstract these facilities away
from the user: the so-called Single System Image systems. These leverage the tools
already present in the underlying operating system, making them usable at the clus-
ter’s level. For example, OpenSSI (based on Linux) provides users with a seemingly
"normal" UNIX system, but actually shares single IO, process and IPC (inter-process
communication) spaces across the entire cluster, giving the illusion of a single machine
[1].

This results in users being able to profit from the load-balancing facilities when
simply running program as they would on a single machine, and to write parallel
programs using the standard UNIX IPC mechanisms, that will end up running on
multiple machines across the cluster. This constitutes purely implicit clustering, as
the users don’t have to know that they’re working with a cluster of machines. On the
other hand, it is still explicit parallelism, because they still have to write multi-process
programs if they want to take advantage of parallel execution.

Clustering & data parallelism

Even with such facilities to ease clustering, writing explicitly task-parallel programs
requires the programmer to devise parallel algorithms, splitting the work into sets of
tasks that will best utilize the machines in the cluster. Techniques for implicit task-
level parallelism (such as compiler auto-parallelization of imperative languages) are, as
of now, not useful for writing highly parallel programs for large clusters.

There is however a large class of problems called data-parallel problems, which are
much more suited to implicit parallelization and clustering. A data-parallel problem is
one in which the computation to perform can be divided into tasks that each apply to a
different part of the input data. For example, the simplest form of data-parallel problem
involves a list of data elements with which the same operation must be performed.

Data-parallel problems are a natural match for clusters. The amount of parallelism
in the problem scales with the size of the data; thus, data-parallel problems of any size
can be solved efficiently given a large enough cluster. Moreover, by restricting oneself
to data-parallel problems, one can create highly efficient programming models enabling
both implicit parallelism and implicit clustering.

2.3 Summary

Writing parallel code involves a trade-off: explicitly parallel programming leaves the
programmer in control of what parts will be executed where, leading to the best po-
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tential performance at the cost of difficulty, meaning that the code will take longer to
write and debug. Also, such work can only be accomplished by skilled programmers
with experience in writing parallel code and dealing with the associated quirks.

The same trade-off then appears at another level, when one wants to run their
parallel programs on computer clusters. Thus, it is highly desirable to make implicit
parallelism and clustering efficient, if only for some classes of problems, so that these
problems can be solved easily by “normal” programmers, and the resulting programs
can be run efficiently on large computer clusters.

The MapReduce and Dryad systems, which we will describe later on, both address
these issues for the class of data-parallel problems.



Chapter 3

Dataflow programming

The MapReduce, Pig Latin, Dryad and Naiad systems discussed in this thesis all take
root in the concept of dataflow programming, a family of programming models in which
programs are modeled as the flow of data between their operators. In this chapter, we
present the concept of dataflow programming and its relevance with respect to parallel
and distributed computing. Finally, we provide a brief exposition of Dryad, whose
concepts we reuse in our own system Naiad.

3.1 Introduction

We explained in Chapter 2 the difference between explicit and implicit parallelism,
and stated that writing explicitly parallel programs was considered very difficult. One
reason for that is related to the concept of a program’s execution state (henceforth
shortened to just state). This notion encompasses the program’s memory, i.e. its
variables, and the position of the instruction pointer (or pointers in the case of a parallel
program). Imperative parallel programming is made difficult because the precise effect
of an instruction depends on this state, which itself depends on the exact sequence
of preceding instructions, which is usually nondeterministic in a parallel setting. The
program’s state is often said to be hidden from the programmer in an imperative setting:
when writing a particular instruction, there is no simple way of knowing what state
the program will be in when that instruction is executed.

Dataflow programming, in its several forms, is a programming model close to pure
functional programming: there are no variables, and instructions have no side-effects:
they compute values from their operands without otherwise changing the program’s
state. The programmer no longer specifies the exact sequence of instruction in their
intended execution order, but rather the chain of operations to be applied to the data.
The actual order of execution is then implicit and can be derived by the compiler (or
dataflow-specialized hardware): an instruction can be executed as soon as its operands
have been computed.

As an example, consider the following program:

x = [some value]

a = f(x)

b = g(x)

c = h(a, b)

In an imperative setting, the f function would be called before the g function. It

10
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is then the programmer’s responsibility to ensure that this is the correct order: for
example, it is not excluded that the f function changes the value inside its argument
variable x, in which case reversing the order would produce a different result.

In a dataflow setting however, x is not a variable but a value, and cannot be changed.
Because the compiler knows that, it also knows that the f and g functions do not depend
on each other, and thus that the second and third instructions can be executed in any
order. Moreover, such instructions that do not depend on each other can be executed
in parallel; dataflow programming languages thus offer implicit parallelism.

3.2 Dataflow graphs

Figure 3.1: DFG
representation of a
dataflow program

Although dataflow programs can be represented as “traditional”
textual instructions sequences as shown above, they exhibit a
structure that lends itself very well to graphical representation
under the form of a dataflow graph (DFG). In such a graph,
vertices represent distinct instructions, while edges represent
the flow of operands from one instruction to another. Cycles
are not permitted, as an instruction cannot depend upon its
own result; a dataflow graph is thus a directed acyclic graph.
Fig. 3.1 shows a DFG representation of the textual example
above.

This can be considered a more natural representation of
dataflow programs. Contrary to the textual example which
used single-assignment variables in an attempt to emulate the imperative style, a
dataflow graph clearly shows the absence of variables: there are no more a, b and
c labels. Additionally, this representation makes visually clear the implicit parallelism
present in the program: any two vertices not linked by any path are eligible for parallel
execution.

Note that dataflow graphs are not a programming model per se, but rather a family
of programming models. While this particular example is rather straightforward, the
interpretation of a dataflow graph in general depends on the particular semantics of
the programming model used. For example, consider a vertex with two outgoing edges:
do these edges represent copies of the output value from the vertex, or does the vertex
produce distinct values on each edge? Only with an actual system in mind is it possible
to answer such a question.

3.3 Dataflow systems

3.3.1 Historical overview

Many dataflow languages and systems have been devised since the introduction of
the dataflow model. The initial goal of most of these systems was to write programs
for parallel supercomputers. Among the earliest well-known general-purpose textual
dataflow language are LAU, Lucid, SISAL, Lustre, ... Hardware dataflow architecture
have also been devised, most notably the MIT’s tagged token architecture; the machine
language for such architectures is dataflow graphs, to which higher-level dataflow or
functional languages can be compiled. More recent initiatives include Prograph, an
object-oriented dataflow language in which dataflow graphs were visually composed on
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(a) SQL query (b) Simple DFG
version

(c) Data-parallel DFG version

Figure 3.2: Simple SQL query with possible DFG translations

the screen. Its implementation was however sequential, making it more an exercise in
visual programming than in implicit parallelism.

Another area of particular success for dataflow languages, particularly visual ones,
is that of domain-specific languages. Indeed, domains such as audio/video, instrumen-
tation, or signal processing in general lend themselves easily to this paradigm of “boxes
that plug into one another”. Current such systems include LabView, Max, Pure Data,
and many more. Again, the goal of such system is much less parallel execution than
providing an adequate domain-specific programming model.

Johnston et al. [18] provide a more complete overview of the historical landscape
of dataflow programming.

3.3.2 Small- versus large-grain

All of the systems that we mentioned so far are limited to small- to medium-grain par-
allelism, i.e. parallelization of single instructions or small routines that treat relatively
small amounts of data. These can work well on shared-memory parallel computers
where work can be quickly dispatched to different processing units, and data can be
exchanged between processing units with minimal latency.

Things are however different with the kind of system relevant to this thesis, i.e.
systems for processing web-scale datasets using large clusters of machines, intercon-
nected through relatively slow networks, forming a shared-nothing architecture. These
systems have very different requirements than those for which traditional dataflow lan-
guages were designed. For example, small-grain parallelism is extremely inefficient for
such systems, as the scheduling and data transfer latencies far exceed the execution
time of individual instructions.

Larger grain, shared-nothing dataflow architectures have been used for some time
“under the hood” for implementing parallel relational database systems [11], as pio-
neered by Teradata. Indeed, relational queries expressed in a declarative language such
as SQL can easily be translated into dataflow graphs, in which database tuples flow
between relational operators. Additionally, in such settings where database tables are
scattered or partitioned across the cluster, parts of the DFG for a query can be repli-
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cated, taking advantage of data-parallelism. Fig. 3.2 shows an example SQL query
and how it can be translated into a DFG, then further data-parallelized.

Note that the semantics of dataflow graphs in such systems is a little different than
what we have shown before: vertices no longer represent operations on single datums
but on streams of data. As a consequence, another form of implicit parallelism appears
in such a DFG: a linear chain of operations can be run as a pipeline; a form of task
parallelism. In the last example, the π (projection) operator could process a batch of
tuples while the σ (selection) operator processes the next batch.

More general-purpose dataflow systems for shared-nothing architectures are uncom-
mon, but some do exist, such as Dryad from Microsoft Research, which we shall present
in more detail.

3.4 Dryad

3.4.1 Target architecture & setting

To the best of our knowledge, Dryad is the only existing production-level general-
purpose dataflow system that targets large shared-nothing clusters. Rather than spe-
cialized parallel computers or clustered database machines, it is intended to run on
farms of up to thousands of commodity, unreliable, general-purpose computers, inter-
connected by standard network technologies (typically Ethernet). Parallelization thus
has to be of a very-large-grain nature, and additional measures must be taken to cope
with frequent failures and the disparity of hardware.

Input data is taken from (and output data written to) a distributed filesystem (DFS )
across the cluster. In a DFS, files are split into smaller chunks, and chunks are scattered
to individual machines of the cluster. Chunks are also automatically replicated, with
copies placed on different machines, providing higher availability and some measure
of fault tolerance. Unlike parallel database systems we mentioned earlier in which
the system is responsible for organizing relational data into partitioned, ordered and
indexed tables for efficient querying, Dryad files are simply files, and any additional
organization is left to the user.

3.4.2 Programming model

Dryad programs are specified as dataflow graphs. However, vertices in these graphs
are no longer individual instructions or routines, but complete programs that can be
written using either a pure sequential style, or an asynchronous event-driven style.
Edges represent communication channels between these programs, which can either be
files, or FIFO or TCP pipes, as chosen by the user.

Dataflow graphs are composed using a special C++ API consisting of four graph-
composing operators, which we call connectors in this thesis. These connectors are
used to build larger graphs out of smaller subgraphs or individual vertices; together
they can be used to generate any dataflow graph, with an emphasis on easily generating
data-parallel ones. Table 3.1 gives a quick survey of these operators; a more complete
and formal description of their operation is given by Isard et al. [17] in their original
article.
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Symbol Name Description Example
^ replication The graph on the left hand

side of this operator will
be replicated a number of
times as specified by the
integer on the right hand
side. Throughout this the-
sis, we also use the super-
script exponentiation no-
tation as a shortcut for
this connector (e.g. Xn for
X ^ n).

>= pointwise
composition

Each output of the left
hand side is connected to
a corresponding input on
the right hand side. If the
numbers of outputs and
inputs do not match, addi-
tional links are created in
a round-robin fashion.

>> bipartite
composition

Each output of the left
hand side is connected to
every input on the right
hand side. Used e.g. for
data partitioning.

|| merge The resulting graph con-
tains all the distinct edges
and vertices present in ei-
ther operand, i.e. it pro-
duces the union of both
graphs.

Table 3.1: Dryad connectors
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3.4.3 Program execution

Top-level vertices in a Dryad DFG, i.e. those without predecessors, represent chunks of
an input file in the distributed filesystem. Conversely, bottom-level vertices represent
parts of the output data, which will be written to filesystem chunks whose concatenation
will constitute the output file. Upon execution of a Dryad program, it is the framework’s
responsibility to distribute the DFG vertices to machines of the cluster, in a way that
will maximize the cluster’s utilization and minimize the amount of data that will be
transferred over the slow network (i.e. attempting to move the computation close to
the data rather than the reverse).

During execution, the Dryad framework monitors the state of the computation, at-
tempting to balance the load between cluster nodes and detecting failures and straggling
computers. In the event of such a detection, the framework can reassign and restart the
implicated vertices onto another machine; to that end, Dryad expects vertex programs
to be fully deterministic and referentially transparent. Edges implemented as tempo-
rary files offer a form of checkpointing : if a subsequent vertex fails, its input data can
be so recovered without re-executing the whole computation. The framework can even
decide to schedule the same vertex more than once at the same time, in a process called
speculative execution intended to prevent such failures. These features allow obtaining
very good scalability on large clusters where failures are common.

Dryad’s design allows for much usage flexibility: Isard et al. [17] claim their im-
plementation to provide performance and latency rivaling specialized parallel database
systems from single parallel computers up to small clusters, and to scale well to large
clusters of thousands of computers.

3.5 Summary

Dataflow programming is a very abstract and general model which is most often used
as a base to devise concrete, more specific systems. As we will see, MapReduce and
Pig Latin both specialize dataflow programming, each in its different way: the former
by constraining the form of dataflow graphs, and the latter by constraining the data
model and operators that can be used.

Systems like Dryad however attempt to constrain nothing, and to provide the most
general-purpose dataflow-based system possible. We believe that a well-devised such
system could act as a sort of “assembly language” for data-parallel systems and pro-
grams, and could be used to efficiently implement all kinds of higher-level systems.



Chapter 4

MapReduce

This chapter presents MapReduce, a programming model for writing data-parallel pro-
grams, and implementation strategy for running them on very large clusters in a highly
scalable way. MapReduce and its implementations are seeing ever-increasing popular-
ity since their introduction, and are now the de-facto standard for data processing at
the largest scales.

Foreword As a programming model, MapReduce can be implemented in many dif-
ferent ways depending on the target environment. The technical details we describe in
this chapter are common to the best-known implementations targeting large clusters,
like Apache Hadoop [12] and Google’s original implementation. The contents of this
chapter is based on the exposition by Dean and Ghemawat [9].

4.1 Introduction

MapReduce is a computing paradigm for writing data-parallel programs with fully im-
plicit parallelism and clustering. It is inspired by the common map and reduce functional
programming primitives. These operate on collections of data: map takes a list, applies
a mapping function to each element of it, and returns the resulting list. reduce takes a
list and returns a scalar, by successively applying a reducing function to the first two
elements of the list, and replacing them with the result of this function.

While a MapReduce program consists in essence of a mapping function and a re-
ducing function, there are some differences with respect to the functional programming
equivalents. For example, the mapping function does not have to produce one result
for every input, but can produce several, or none at all. Another difference is that
MapReduce manipulates data as key-value pairs. The mapping function transforms
each key-value pair it receives into zero or more new pairs. The reducing function
aggregates all pairs with the same key, and yields zero or more final pairs.

The important fact is that this mapping function can be replicated to different
machines, to run simultaneously on different parts of the data, thus exploiting data
parallelism. The reducing function can also be so replicated by partitioning the key
space and running one reducer for each partition.

The original MapReduce implementation by Dean and Ghemawat, as well as its
open-source clone Hadoop, both target large shared-nothing clusters of computers.
They are now of widespread usage for solving problems in the petabyte scale on clusters

16
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of thousands of computers. For example, MapReduce is used most notably for indexing
web pages for Google’s web search engine, the original purpose of the framework.

4.2 Programming model

4.2.1 Description

Data in MapReduce is modeled as key-value pairs (henceforth referred to as just pairs).
Let K be the set of all keys and V the set of all values. We use the notation list(S) to
denote an ordered list with elements in the set S, allowing duplicates. The programmer
submits to the system:

• a mapping function (map : K×V → list(K×V )) that takes one pair and outputs
any number of new pairs

• a reducing function (reduce : K × list(V ) → list(K × V )) that takes a key and
a set of pairs corresponding to that key, and outputs any number of new pairs.

The execution semantics are as follows. Let us assume that the input data is the list
of pairs {(k1, v1), . . . , (kn, vn)}.

1. The mapping function will be called for every pair (ki, vi) from the input data.
This is called the map phase.

2. The resulting intermediary pairs I =
⋃n

i=1map(ki, vi) will be collected together
and sorted by key, where

⋃
denotes list concatenation instead of set union. We

call this the shuffle phase.

3. The reducing function will be called for each intermediary key k in I with the
list of corresponding intermediary values V = {v | (k, v) ∈ I}. This is known as
the reduce phase.

4. The pairs output by the reduce function constitute the result of the computation.

Figure 4.1: Dataflow
of a MapReduce pro-
gram

The first step is trivially parallelizable, since all calls to the
mapping function are independent of one another. The sec-
ond step can take advantage of parallel sorting algorithms, like
merge-sort. Finally, the third step can be parallelized if the inter-
mediary I pairs are partitioned by their key; different partitions
can then be treated by different computing nodes running the
reducing function.

Note that MapReduce is a specialization of DFG program-
ming models: any MapReduce computation can be seen as a
dataflow graph like that of fig. 4.1. MapReduce constrains the
general form of the graph, allowing only to change the mapping
and reducing functions.

4.2.2 Examples

Here we present examples of MapReduce solutions to two simple
data-parallel problems. In the following examples, the function
emit(key,value) is taken to add its arguments to the output as a key-value pair.
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Counting specific words Let us say that we have a large collection of documents
in which we want to count the occurrences of certain words. This can be expressed as
follows (in pseudocode):

function map(key, value) = { 

   # key = anything, value = chunk of text 

   foreach word in splitwords(value) { 

      if word_is_of_interest(word) 

         emit(word, 1) 

   } 

} 

function reduce(key, values) = { 

   emit(key, count(values)) 

} 

This assumes an input function that respects word boundaries. The word_is_of_interest
function specified which words need to be counted. When a matching word is found,
it is send as the key of a key-value pair, with the number 1 as a place-holder value.
Reducers will simply count the number of values associated with each specific word.

Reverse web-link graph [9] The following MapReduce pseudocode computes the
reversed graph of web page links for a set of pages:

function map(key, value) = { 

   # key = webpage URL, value = webpage content 

   foreach linkurl in find_links(value) { 

      emit(linkurl, key) 

   } 

} 

function reduce(key, values) = { 

   emit(key, values) 

} 

The find_links function is assumed to recover the URL address of each link in the
HTML code of the provided web page. For each of these parsed addresses, a key-value
pair is outputted with the parsed link as a key and the originating address as a value.
The reducers will output each link along with the address of every page that contains
the link.

4.2.3 Extensions

The implementations studied in this chapter also allow the user to specify:

• the input function used to parse input pairs from filesystem bytes;

• the output function used to serializes output pairs back to filesystem bytes;

• a combining function whose use will be outlined in the next section;

• the partitioning function that is used to distribute output pairs from mappers to
different reducers;
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Figure 4.2: MapReduce job execution

• the comparison function that is used to sort keys.

A variety of other facilities are also provided, such as the ability to run map-only jobs
without the shuffle and reduce phases, the ability to submit trees of inter-dependent
jobs, and more.

Other works also extend MapReduce by providing additional computing phases;
e.g. map-reduce-merge [27] provides a merge phase to combine the outputs of several
MapReduce jobs.

4.3 Detailed operation

4.3.1 Typical setting

As stated before, the typical platform for MapReduce is a large cluster of hundreds, or
even thousands of “commodity” computers, communicating via switched Ethernet. Jobs
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are submitted to a master node, which takes care of assigning parts of the computation
to the other (worker) nodes.

Data storage across the cluster is typically done using an ad-hoc distributed file sys-
tem (DFS ), such as GFS [14] for Google’s implementation and HDFS [4] for Apache’s.
These filesystems store data partitioned in large chunks, with each chunk replicated
across multiple machines, enabling concurrent access and failure tolerance. Further-
more, using distributed storage on the same cluster that runs MapReduce jobs enables
the execution framework to take advantage of data locality, i.e. to assign work to nodes
that are nearby the input data, saving network bandwidth.

4.3.2 Mapping phase

When a job is submitted, the master node creates one map task per chunk (usually
tens of megabytes) of input data; it then assigns these tasks to worker nodes in the
cluster. Each of these tasks proceeds as follows. First, the data chunk is fetched and
parsed as a set of key-value pairs. The user’s mapping function is then called on each
of these pairs, yielding new key-value pairs that are collected together and sorted by
key.

These new pairs can then go through the optional combining phase, where another
user-defined function is applied to the set. This can save time and space for some
problems. For example, consider a program where the output values of the mapping
function are to be summed in the reducing function. A combining function that com-
putes the partial sum would then improve efficiency, by not requiring to store and
process the useless intermediary values.

Finally, the data goes through the partitioning phase, where it is separated in
one partition per (future) reducing task, for example using a hash function. In each
partition, pairs are sorted according to their key. Partitions are saved as local files
before the reducing phase begins.

4.3.3 Reducing phase

When a map task is finished, the master node is notified about the location of the files
holding the partitioned intermediary data. Each of these locations will be passed on to
the corresponding reduce task, which will collect the data and merge-sort it with the
output of the other map tasks.

Once all the map tasks are done and all the data has been collected, the reducers
call the user’s reducing function, once for every distinct key in sorted order, passing it
the set of key-value pairs corresponding to that key. Each reducer serializes its results
to a file.

4.3.4 Fault tolerance

Because the target systems consists of many general-purpose commodity computers,
hardware failures are common and have to be expected. MapReduce uses re-execution
as a failure handling mechanism.

While a job is executing, the master node periodically pings busy workers to ensure
that they’re still alive. If a worker node doesn’t answer in time, the master considers
it dead. Then, all tasks that were scheduled on the dead worker are restarted onto
another worker machine.
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Figure 4.3: Example of MapReduce execution flow

This mechanism requires the map and reduce functions to be referentially transpar-
ent, i.e. they must always produce the same output for a fixed input. If this condition
is met, then the re-execution of tasks because of failures will not alter the results of
the computation.

4.3.5 Example of execution

Consider the word-counting example described in the previous section, and that we
want to count the respective occurrences of the words “apple” and “pear”. Using a text-
specific input function, mapper nodes will generate key-value pairs where the values
contain pieces (e.g. lines) of the input text from the distributed filesystem. Figure
4.3 gives an example of the flow of pairs in the system during the mapping and re-
ducing phases, assuming two mappers, two reducers, and a partitioning function that
differentiates the words “apple” and “pear”.

In this example, input text is first parsed in key-value pairs in which keys represent
line numbers, and values the corresponding lines of text. The map function extracts
the words “apple” and “pear” from every line it finds them in; then, the framework
partitions them so that one reducer receives the instances of “apple” and the other one
those of “pear”. Finally, reducers sum the counts of their respective words, yielding the
final counts as results.

4.4 Summary

MapReduce has the advantage of providing a very simple programming model: two
simple, sequential functions become a huge parallel and distributed program, capable
of scaling almost infinitely to deal with about any amount of data.

Although this simple, constrained programming model greatly simplifies that kind
of highly scalable implementation, it is also a drawback for the programmer. Though
many data-parallel problems easily fit in this map-reduce structure, not all of them do so
perfectly. Several extensions to the basic model have been proposed, adding additional
and optional phases to the computation so as to ease the efficient implementation of
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some programs.
Additionally, writing programs as map and reduce functions proves to be cumber-

some in practice, especially in domain-specific settings which would be better served
by higher-level tools. For this reason, languages such as Pig Latin have been developed
as a way to further ease programming for MapReduce systems.



Chapter 5

Pig Latin

In this chapter, we present Pig Latin, a language for data processing, originally de-
veloped by Yahoo! to ease expressing relational-like programs for running on Hadoop.
We start by outlining the language’s goals, style and the operators it provides. As
examples, we provide Pig Latin version of the same programs we’ve shown in Chapter
4. Finally, we describe the way in which Pig Latin programs are compiled into MapRe-
duce ones for execution on Hadoop, outlining the limitations that we perceive to this
compilation strategy.

5.1 Introduction

5.1.1 Overview

Pig Latin [20] is a dataflow programming language; every statement expresses a trans-
formation of some data set into another, using relational-style operators. These trans-
formations chain together to compute the final result set. Though Pig Latin uses the
same kind of operators as database query languages such as SQL, programs are written
in a more procedural-like fashion: the user has to write individual successive transfor-
mations separately rather than pack them all up in a large query (see table 5.1 for a
comparative example).

Pig Latin programs are not meant to be executed procedurally however. As with
other textual dataflow languages, the order of statements is not necessarily the order
of their execution, and the “variables” defined in the code are not actual variables, but
merely labels that represent data flow between successive relational operators.

The only current implementation of Pig Latin, Apache Pig, targets the Hadoop
MapReduce platform.

5.1.2 Motivations

While MapReduce was created to ease writing data-parallel programs for large clusters,
programmers soon found its programming model to be too cumbersome for frequent
usage. They found that although many tasks they used it for were similar in con-
cept, code reuse was difficult, and writing a new program often amounted to a lot of
boilerplate. There was need for a higher-level language that could easily express com-
mon data analysis tasks to be executed on MapReduce. As an answer to that need,
researchers at Yahoo! developed Pig Latin.

23
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SQL version

-- lists users that have clicked at least 50 times on a link to some

-- specific URL.

SELECT user FROM user_clicks

WHERE targeturl = ’http://example.com/url’

GROUP BY user

HAVING SUM(clicks) >= 50

Pig Latin version

clicks = LOAD ’user_clicks’ AS (user, sourceurl, targeturl, clicks);

forurl = FILTER clicks BY targeturl==’http://example.com/url’;

grouped = GROUP forurl BY user;

morethan50 = FILTER grouped BY SUM(forurl.clicks) >= 50;

result = FOREACH morethan50 GENERATE $0;

DUMP result;

Table 5.1: Pig Latin style vs. SQL style

Why not SQL?

Pig Latin was developed with the programmer in mind. SQL allows the production of
“sentences” of a specific form, with the goal to resemble English and be usable by non-
programmers. This strongly constrains how queries can be written, and feels unnatural
to many programmers. Complex SQL queries are known to be hard to write and read.

Pig Latin expresses the same kinds of operations but with a much more compre-
hensible step-by-step presentation that resembles imperative programming more closely
and is thus more familiar to the programmer. All in all, creating Pig Latin instead of
using SQL was in good part a practical and aesthetic choice by the developers of Pig
who also were the intended end-users.

Why not parallel databases?

Although efficient, shared-nothing parallel database management systems (DBMS s)
implementing query languages like SQL do exist, their design goals are very different
from Pig’s. To grossly summarize, Pig (like MapReduce) is designed for ad-hoc anal-
ysis of arbitrary, usually flat, possibly unformatted data. DBMSs are on the other
hand designed for efficient storage, lookup and querying of structured data. A deeper
exploration of the differences between both kinds of systems is made in Chapter 8.

Contenders

Other platforms with similar design goals do however exist. Google’s Sawzall [21]
provides a domain-specific language for writing MapReduce program. It provides a
lightweight syntax for writing a mapping function and specifying which aggregation



CHAPTER 5. PIG LATIN 25

operation (from a fixed set) must be used in the reducing function. It is however
arguably more limited than Pig Latin, as Sawzall programs can only express single
MapReduce jobs instead of arbitrarily complex transformations. Semantically, though
both are mostly equivalent, Sawzall more closely maps to the MapReduce model, while
Pig Latin attempts to be higher-level by providing relational-like operators.

SCOPE [5] provides a programming model close to Pig Latin’s with a more SQL-like
syntax, implemented on top of Microsoft’s Dryad. Another project, DryadLINQ [28],
provides means of executing queries expressed with LINQ (Microsoft .NET’s Language-
Integrated Query) on the Dryad platform. LINQ’s approach differs from specialized
languages like Pig Latin in that it allows to use the same programming languages (e.g.
C#) and data models as when writing “regular” programs for the .NET platform. The
DryadLINQ and SCOPE projects both seem very promising; unfortunately, not many
details have been disclosed about them.

5.2 Language description

5.2.1 Data model

Unlike relational database systems, Pig Latin offers a nested data model that can
represent complex structures. In addition to atomic types such as numbers and strings,
Pig Latin provides the following aggregate types:

• tuples, which are ordered collections of values (called fields) of any types;

• bags, which are unordered collection of tuples, possibly of different lengths and
containing fields of different types; and

• maps, which are collections of key-value pairs, where the key is of an atomic type
and the value is of any type. Keys are unique inside the map, and values can be
looked up using their key.

Tuples are thus analogous to their relational counterparts, with the addition that they
can contain nested structures. Bags are analogous to (unindexed and unordered) rela-
tions, with the exception that the tuples contained can each have a different schema,
i.e. different fields with different types.

Fields inside tuples can be named; they can be dereferenced either by name or by
position. The same goes for tuples inside bags. Values inside maps can be dereferenced
using their corresponding key.

5.2.2 Programming model

One of the most important design goals of Pig Latin is parallel execution. To that
end, it provides a limited set of relational operators, most of which lend themselves
to efficient parallelization. Most Pig Latin statements consist in an assignment of the
result of such an operator to a variable. Table 5.2 gives a list of some of these operators
along with their descriptions.

Other operators and functions, can be used where appropriate within relational
statements. These include arithmetic and comparison operators, as well as functions
that operate on collections, such as counts, averages, etc... Pig Latin also allows user-
defined function, written in other programming languages, to be used in this way.
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Operator Description
FOREACH ... GENERATE ... Applies a transformation to each tuple in

an input bag, yielding an output bag.
Note: to exploit Pig Latin’s nested data
model, some operators can be nested in
the transformation specified by GENERATE

... in order to operate on nested data.
DISTINCT ... Removes duplicate tuples from a bag,

yielding a new bag.
[CO]GROUP ... BY ... Groups tuples in a bag by one (or more) of

their fields. The result is a bag in which
the tuples contain the grouping keys as
first field, and the bag of corresponding
tuples as a second field. If COGROUP is used,
several bags can be grouped together in an
operation similar to relational joining.

FILTER ... BY ... Removes tuples in a bag that don’t satisfy
a given condition.

JOIN ... BY ... Joins two or more bags in the relational
sense. An additional parameter (USING)
can be set to choose the join algorithm
used.

UNION ... Computes the concatenation of two or
more bags (not the set union !).

LOAD ... Loads a bag from the filesystem, using a
specified (built-in or user-defined) loading
function. The schema of the loaded data
can be optionally specified.

STORE ... INTO ... Writes a bag to the filesystem, using a
specified (built-in or user-defined) storing
function.

Table 5.2: Some of Pig Latin’s relational operators
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This allows custom ad-hoc data processing to be inserted within Pig Latin scripts, an
important design goal.

Pig Latin is statically and weakly typed: every variable has a definite type, but
values are implicitly cast when needed (and possible). When reading tuples using the
LOAD operator (c.f. table 5.2), fields without an explicitly specified type are assumed
to be of the atomic type bytearray.

5.3 Examples

As examples, here follow translations in Pig Latin of the examples of MapReduce
programs given in section 4.2.2.

Counting specific words To simplify, we assume here that we want to count the
occurrences of the words “apple” and “pear”.

1 text = LOAD ’mydocument.txt’ USING TextLoader()

2 AS (line:chararray);

3 words = FOREACH text GENERATE FLATTEN(TOKENIZE(line))

4 AS (word);

5 filtered = FILTER words BY (word==’apple’)

6 OR (word==’pear’);

7 grouped = GROUP filtered BY word;

8 counts = FOREACH grouped GENERATE $0, COUNT($1);

9 STORE counts INTO ’resultfile.txt’;

The first statement loads the input document using the built-in TextLoader(), which
outputs a bag in which each tuple contains one line of text. The end of the instruction
(line 2) declare those tuples to each contain one field named line of type chararray.

The next statement breaks each line into words using the (built-in) TOKENIZE func-
tion. The FLATTEN function, also built-in, is used to “un-nest” the result of TOKENIZE,
a bag, into its constituent tuples. The output produced by the whole instruction is
thus a bag of tuples each containing one word of the input. We declare these tuples to
contain one field with the name word, leaving the type implicit.

We then remove undesired words in line 5, and group the remaining identical words
together in line 7. Finally, we count the occurrences of each word and output tuples of
the form (“apple”, 3) to the filesystem.

Reverse web-link graph For this example, we assume that the web pages URLs
are stored along with their contents in a tab-separated file. A more realistic scenario
might involve a custom input function that actually fetches the pages. We also assume
the existence of a user-defined function find_links that extracts the URLs of links
from a page’s content and returns them as a bag.

1 pages = LOAD ’webpages’

2 AS (url:chararray, content:chararray);

3 links = FOREACH pages GENERATE url,

4 FLATTEN(find_links(content)) AS target;

5 reverselinks = GROUP links BY target;

6 STORE reverselinks INTO ’resultfile.txt’;
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The first instructions loads webpage URLs and their content, presumably from the
filesystem. The second statement gathers links from each page and outputs a bag of
tuples of the form (url, target) for each hyperlink from page url to page target.
Again, FLATTEN is used so that the results are not grouped by source page but flattened
as a single bag.

Finally, links are reversed by grouping them by target, and the results are stored
on the filesystem.

5.4 Compilation into MapReduce

5.4.1 Outline

As with other textual dataflow languages (cf. Chapter 3), a textual Pig Latin program
defines a corresponding dataflow graph, called a logical plan in this context. While
parsing statements, the Pig compiler gradually builds this plan as its internal represen-
tation of the program. When it encounters a STORE or DUMP statement, it isolates the
part of the plan that leads to that statement by means of a reverse topological sort,
and passes it through an optimizer. The optimizer performs some database-like opti-
mizations, such as pushing up filters, inserting projections to prune out unnecessary
columns, etc.. Finally, the logical plan is compiled into a physical plan to be executed.

The physical plan is then transformed into a series of MapReduce jobs to be exe-
cuted in sequence, by grouping adjacent operators into mapping or reducing functions.
Statements that introduce map/reduce boundaries include [CO]GROUP and JOIN; each
such statement thus corresponds to a different MapReduce job. Other statements
such as FILTER and FOREACH are pushed either in the reduce function of a preceding
boundary-inducing statement, or in the map function of a following one. Inside the
map and reduce function themselves, a regular non-parallel dataflow engine is used to
interpret the corresponding parts of the physical plan.

After some additional optimizations, including the attempt to make use of MapRe-
duce’s combiner feature, the resulting graph of MapReduce jobs is submitted to Hadoop
in topological order.

5.4.2 Example

To illustrate the compilation of Pig Latin, let us take a slightly more complex version
of the word counting example presented in Subsection 5.3. In this version (provided in
Listing 5.1), the specific words to be counted are extracted from a second dataset rather
than being hard-coded. Also, all words are passed through a hypothetical LOWERCASE
function in order to perform case-insensitive comparisons.

Fig. 5.1a shows the logical plan for this example. Note that it is a direct translation
of the textual program into its DFG: all labels have simply been replaced by dataflow
links. Fig. 5.1b shows the final result of the compilation, the MapReduce execution
plan. The program was split into two MapReduce jobs: one for the join and one for
the grouping.

For the first job, the logical join operator was replaced by the “local rearrange”,
“union” and “package” operators. These operators, in combination with the implicit
sort and shuffle phases between the map and reduce phases, implement a variant of the
sort-merge join algorithm (see Chapter 7 for more detail). Also note that the compiler
has inserted a STORE operation at the end of the reduce function. This is required to
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Listing 5.1: More complex word counting program
text = LOAD ’mydocument.txt’ USING TextLoader()

AS (line:chararray);

words = FOREACH text GENERATE FLATTEN(TOKENIZE(line))

AS (word);

lcwords = FOREACH word GENERATE LOWERCASE(word)

AS(word);

goodwords = LOAD ’goodwords.txt’ USING TextLoader()

AS (goodword);

lcgoodwords = FOREACH goodwords GENERATE

LOWERCASE(goodword) AS (goodword);

filtered = JOIN lcwords BY word,

lcgoodwords BY goodword;

grouped = GROUP filtered BY word;

counts = FOREACH grouped GENERATE $0, COUNT($1);

STORE counts INTO ’resultfile.txt’;

store the intermediary results, as the rest of the computation takes place in a second,
separate MapReduce job.

The second job is slightly more complex. Usually, Pig Latin’s GROUP operator is com-
piled, like joins, by simply taking advantage of the sort and shuffle phases of MapReduce
which essentially perform a grouping themselves. In this case however, Pig as detected
that we do not need the actual grouped results, but only the count of each group. It
has thus inserted a combining function (see Chapter 4) to compute the intermediary
counts just after the mapping phase. The second part of the COUNT function (actually
a sum) takes place in the reduce phase to sum the intermediary counts together. This
optimization can be applied to functions other than COUNT, even user-defined ones, as
long as they are declared as algebraic and describe how they can be split in this fashion.

5.4.3 Limitations

We can use this last example to outline some of the limitations of the current imple-
mentation of Pig Latin on top of Hadoop. A first one comes from the fact that longer
Pig Latin queries must be split into chains of distinct MapReduce jobs. This intro-
duces unnecessary latency in the form of synchronization barriers between subsequent
jobs, and I/O overhead due to the unnecessary storing and loading of intermediary
data. The underlying reason for this limitation is the inflexibility in specifying a job’s
dataflow.

Second, this two-level structure of a physical plan inside a MapReduce plan is
difficult to optimize in practice. Though this difficulty cannot be formally quantified,
the last example outlines a practical case. In that example, the compiler transformed
the GROUP operator into its own MapReduce job; it normally does this to use the shuffle
phase as a way to partition tuples according to their grouping key. In that particular
program however, data are already correctly partitioned beforehand, because the shuffle
phase of the first job used the same key. As a consequence, the entire program could
be better compiled as a single job, with the grouping and counting taking place in
the reduce function. While such an optimization would be much beneficial, it proves
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(a) Logical plan

(b) MapReduce plan

Figure 5.1: Pig compilation plans (simplified) for the enhanced word counting example

awkward to implement in practice and is currently absent from Pig.
Finally, we can notice that not all the implicit parallelism present in a Pig Latin

program is exploited. In our last example, the program starts with two data-parallel
branches that end up running sequentially in a map function. The dataflow engine
running inside the map and reduce functions also do not take advantage of possible
pipelining opportunities. Though these limitations are not overly important in a web-
scale setting where the problem is “too parallel” already, lifting them might broaden
the scope of Pig Latin to more database-like workloads.

5.5 Summary

We have explained Pig Latin’s current compilation strategy and some of its limitations.
Although these limitations could be fixed despite using a MapReduce framework as a
back-end, and so are not inherent to MapReduce itself, they would all be naturally
lifted by the use of a more general DFG platform instead, as we will show using our
own implementation.
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Chapter 6

Naiad

Unfortunately, most of the work regarding Dryad has been happening behind closed
doors so far. We thus do not have access to a usable implementation, nor to implemen-
tation details, nor even to the precise semantics and programming model of the system.
In order to fulfill the goals of this thesis, we thus needed to design and implement our
own model of large-grain parallel computation based on dataflow graphs. We call the
resulting system Naiad ; it attempts to mimic the principles exposed in [17], sometimes
departing from them slightly.

In this chapter, we start by presenting Naiad’s programming model, along with the
usual examples. We then outline some of the details of our implementation, and the
differences between our system and Dryad. Finally, we present our Pig Latin to Naiad
compiler back-end.

6.1 Programming model

6.1.1 Operators

In our system, as with Dryad, a program is specified as a DFG of operators intercon-
nected by communication links. Isard et al. [17] state that Dryad operators are “usually
written as sequential programs”, but that asynchronous interfaces can be used instead
to support “an event-based programming style”.

In contrast, and in order to allow for the as much implementation flexibility as
possible, we model operators as purely asynchronous, message-driven programs. Our
basic interface reacts to messages of the form (i, d), which indicates that datum d was
handed by the upstream operator connected through the ith incoming edge. We also
provide an interface for processing incoming data as batches rather than individual
elements, and another for writing synchronous programs that react only when at least
one datum is present on each incoming edge, more closely following the traditional
dataflow paradigm.

Upon receiving a message, an operator may perform any work it wants, and hand
out zero or more messages of the form (o, d), indicating that datum d should be sent
to the operator connected downstream through the oth outgoing edge. The framework
will translate this output number o to the corresponding input number for the next
operator, and dispatch the message. Finally, an operator may react to a special EOF
message, signaling the end of data from all of its predecessors. The operator can then
perform any final action desired, before the framework broadcasts the EOF message

32
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Listing 6.1: Filter operator definition
Filter(predicate: D 7−→ {>,⊥}) {

process(input, datum) {

if(predicate(datum))

broadcast(datum)

}

}

Listing 6.2: Partitioning operator definition
Partition(func: D 7−→ N) {

process(input, datum) {

emit(func(datum) % nbOutputs, datum)

}

}

to all successors.
Explicit management of these input and output numbers is superfluous or irrelevant

for some operators, but essential for others in order to control data flow. For example,
a simple filtering operator will disregard the input number, and broadcast its results to
all of its outputs. A partitioning operator will choose the output to send to according
to a specific partitioning function. Finally, a relational join operator might use the
input number to determine which input relation the data belongs to.

Listings 6.1 and 6.2 describe respectively the filtering and partitioning operators.
Let us use this opportunity to introduce the sort of pseudo-code notation that we will
use for describing Naiad operators throughout the rest of this document. First note
that these operators can be parametrized, in this case with functions (for which we
use the standard mathematical notation, i.e. A 7−→ B where A is the domain of the
argument and B that of the image). These operators define the process procedure
which is used to treat incoming messages like described above. This procedure can
make use of the following information and tools provided by the runtime framework to
specific running instances of the operator:

• the nbOutputs and nbInputs values, which indicate the number of successors (resp.
predecessors) to this operator within the DFG;

• the emit procedure which hands out a datum on a particular output number; and

• the broadcast procedure which hands out copies of a datum on every output.

Additionally, although not featured in these examples, operators can make use of state
variables specific to each instance, and define a finish procedure to be called once the
EOF message has been received on all inputs. Finally, operators can take parameters
such as, in these respective examples, the specific filtering predicate and partitioning
function. Note that D denotes the set of all data elements.
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6.1.2 Connectors

Many operators need to be linked together into a directed acyclic graph (DAG) in order
to constitute a Naiad program. To this end, we use the same connectors as Microsoft’s
Dryad, recalled for convenience in Chapter 3, Section 3.4; see [17] for a more detailed
and formal explanation. Together, these connectors can generate any directed acyclic
graph, and thus any DFG program, given the operators.

6.1.3 Example programs

Simple example

We can now show an example of a simple, complete Naiad program. We assume a
dataset comprised of integers; we want to sum all the odd and even numbers separately,
and print out the difference between both sums. In sequential pseudocode, this could
be written as follows:

even = 0

odd = 0

foreach integer i in data:

if i % 2 == 0:

even += i

else:

odd += i

end.

print(even - odd)

Such a program is most likely useless, and could be implemented in ways much
smarter than we’re about to show. Nevertheless, it provides a simple demonstration
of everything that was explained so far in this chapter, and also outlines some of the
quirks of our programming model. Let us start by providing pseudo-code definitions
for the different operators that we will use:

Input() {

process(input, datum) {}

finish() {

foreach integer i in data chunk:

broadcast(i)

}

}

Sum() {

sum = 0

process(input, datum) {

sum += datum

}

finish() {

broadcast(sum)

}

}

Parity() {

process(input, datum) {

emit(datum % 2, datum)

}

}

Diff2() {

result = 0

process(input, datum) {

result += (-1 * input) + datum

}

finish() {

broadcast(result)

}

}
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(a) Non-data-parallel version

(b) Data-parallel version (k = 4)

Figure 6.1: Example Naiad program

In this example, Input is an operator that acts as a data source; its process routine
is empty since it never receives any messages. Instead, the finish procedure is defined
to inject the input data into the rest of the program. This trick allows data sources to
be defined like normal operators despite our “push” model of dataflow.

Let us start by giving a non-data-parallel version of our program (the Print oper-
ator, not defined above, simply prints out all incoming data):

Input >= Parity >= Sum2 >= Diff2 >= Print

Input integers are split according to parity, then summed separately; then the
difference between the sums is calculated and printed. This program outlines a practical
difficulty when programming with this model: that writing a program by composing
operators often requires specific knowledge of the operators internal behaviors. In this
case, it is necessary to know that Parity outputs even numbers on its left output, and
that Diff2 computes left input minus right input. If either of these behaviors were
reversed, then the program would compute the wrong result.

It is also required to know that Parity expects two output, and Diff2 two inputs;
otherwise the program will work but might not compute anything useful. Also note
that, given the behavior of Diff2, all Sum operators could be replaced by no-ops, but
not omitted. As we will later see, other practical programs require inserting no-ops to
correctly match inputs to outputs. Though these quirks can make our system somewhat
difficult to program by hand, they also allow for the most flexibility, which fits our goal
of a good target for compilers.

Let us now create a data-parallel version of the same program, using the same
operators. Let us assume that the input data is divided into k chunks, reflecting
the assumption of a shared-nothing architecture in which data files are scattered in a
distributed filesystem. Let us further assume, for simplification, that different instances
of the Input operator will automatically read a different chunk of the data (a practice
for which our implementation provides programming helpers). Our program can then
be expressed as follows:
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Figure 6.2: Counting specific words in Naiad

(Input >= Parity)k >> Sum2 >= Diff2 >= Print

Note that this will yield exactly the same program as before for k = 1; figure 6.1
illustrates both versions.

Counting specific words

We show here a more concrete example: the counting of specific words, for which we
presented a MapReduce version in Chapter 4, Section 4.2.2. We define the following
two operators, assuming that we want to count occurrences of a set of m words noted
W : {w0, ..., wm−1}.

TextInput() {

process(input, datum) {}

finish() {

foreach line l in text data chunk:

broadcast(l)

}

}

Words(W : {w0, ..., wm−1}) {

process(input, line) {

foreach word u in line:

if(u ∈W):

emit(i : wi = u, 1)

}

}

Given the same Sum operator as in the previous example and assuming the input
file to be divided in k chunks in the DFS, we can write the programs as follows (note
that, for simplification, this program omits to do anything with its output):

(TextInput >= Words(W))k >> Summ

This example is written in a way that outlines the advantage of the flexibility
of DFG models as opposed to MapReduce. The operators used and the program’s
dataflow are specifically tuned for this particular problem, making this implementation
theoretically more efficient than the MapReduce version that we presented, without
being significantly more complicated. Indeed, the operations of sorting and grouping
that happen between the map and reduce phases are made unnecessary. However, if a
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Figure 6.3: Naiad architecture overview

higher level of abstraction was desired instead, one could easily solve the same problem
using more generic Naiad operators (e.g. Map and Reduce).

6.2 Implementation

6.2.1 Target platform

For our experiments, we’ve produced an API for writing Naiad programs in the Scala
[29] programming language, as well as a back-end to this API for running those pro-
grams on a small cluster of computers. This API closely maps the notation for operators
that we used above, and provides Dryad’s connectors for graph building. The target
platform is the Java Virtual Machine (JVM), a choice made to ease the subsequent
integration with the Pig platform for our experiments.

Given our asynchronous, message-based semantics, it is apparent that message-
passing frameworks are a good fit for our implementation. We chose the Akka middle-
ware [16], a scalable and distributed implementation of the actors concurrency model
for the Scala language. This framework provides us with cluster management, trans-
parent remoting and data serialization/deserialization, and many more features that
greatly ease the implementation of our system.

For quick reference, the actor concurrency model can be summarized as follows:

• the entities, called actors, have an internal state and can react to messages

• an actor may react to a message by any combination of the following:

– changing its internal state,

– asynchronously sending message(s) to other actor(s), or

– spawning new actors

• distributed implementations, like Akka, allow flexible and transparent placement
of actors on machines of the clusters.
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6.2.2 Specifics

A Naiad cluster is composed of a master node and any number of slave nodes. A
program to be executed is handed out to the master node. The process running on this
node then assigns individual operators or subgraphs to different slave nodes (fig. 6.3).
Not all operators need be assigned to nodes initially; our current implementation uses
a fixed capacity, i.e. the maximum number of operators that can run simultaneously
on a specific slave node.

When assigning an operator to a slave node, the master must do the following:

1. select the slave node among those available,

2. send the operator’s program code to the elected slave,

3. provide all nodes currently running a predecessor with the location of the new
operator.

The first step is the least trivial, and is very important for obtaining good performance.
It depends on the cluster’s topology, the current state of the execution, and even the
semantics of the specific program. For a trivial example, consider a relational cross
product operator, followed by a counting operator. It would be very wasteful to send
the output of the cross product on the network; thus, both operators should best be
scheduled on the same node. Real-life examples of this problem will be presented in
Chapter 7. Our current approach in the software is a combination of general heuristics
and user-provided hints. Another, perhaps better approach might consist in some form
of auto-tuning of operator placement at runtime, though it might be more complicated
to implement, especially along with scalability features like checkpointing.

Slave operation can be summarized as follows. When a slave receives the program
code for an operator, it starts up a new actor, and replies to the master with a handle to
it. After starting up, if the operator has no predecessors in the DFG, it is considered a
data source and the framework simulates an end-of-file situation to trigger processing.
This actor will respond to incoming messages by executing the operator’s code. During
the course of its life, it will also be provided by the master with handles to the actors
running the next operators in the DFG. The sequence diagram on fig. 6.4 shows an
example of execution of a small Naiad program on a cluster of two slaves of capacity
one each.

The operator API we presented earlier models data processing on one datum at
a time; however, due to network latency and other reasons, it is much preferable to
actually process it in batches. To this end, the emit procedure that we have used above
does not send the output datum, but stores it in a buffer specific to the output number
specified. When this buffer exceeds the specified batch size, it is sent to the target
actor, if known. Otherwise, it is either archived to memory or spilled to secondary
storage, according to availability.

6.2.3 Differences and limitations compared to Dryad

Our implementation is currently limited to the scope of our (small-scale) experiments,
and therefore does not implement important scalability features such as checkpointing
and speculative execution, which Dryad does. We also do not support runtime modifi-
cation of the dataflow graph. Note however that our basic model, like Dryad’s, allows
for much flexibility in implementing those features.
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Figure 6.4: Example execution of a small program

Our system also lacks Dryad’s notion of channel types: Dryad channels default to
temporary files, but can be manually specified by the user as sockets or local pipes.
This approach has some quirks [17], and we believe ours to be simpler. Because dif-
ferent operators running on the same node run as threads within the same JVM, local
pipes are replaced by reference passing, which is both faster and less quirky. Inter-node
communication happens over sockets by default, and stale data that gets too large for
main memory is stored to the disk automatically. Our implementation thus transpar-
ently covers all of Dryad’s channel types, and the problem of selecting them falls back
to that of assigning operators to slave nodes.

Dryad has a feature called dynamic graph refinement, which allows writing rules
to modify and optimize the dataflow graph at runtime, according for example to the
scheduling location of vertices and the amount of data transiting between them. Isard
et al. [17] give examples of how this can be useful in practice.

6.3 Pig Latin to Naiad compiler

In order to test our hypotheses that DFG frameworks such as Naiad are a better
match than MapReduce as a target for data processing languages such as Pig Latin,
we developed a new back-end compiler and runtime interface to Apache Pig targeting
the Naiad platform.

Our compiler sits on top of Apache Pig 0.8, retrofitted with structures from previous
versions which allowed plugging one’s own back-end compiler and runtime platform in
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place of Hadoop. To execute a query, Pig submits to our back-end the optimized
logical plan of the query (a dataflow graph of Pig Latin operators). Our compiler then
produces a data-parallel Naiad graph from the logical plan and submits it to a Naiad
cluster. It completely implements about 90% of Pig Latin’s operators.

6.3.1 Compilation algorithm

The compilation process is very simple due to the fact that both the input and the
output are programs modeled as dataflow graphs. We basically need to replace every
logical operator in the input with a data-parallel implementation of the operation. The
outer compilation algorithm is as follows (in pseudocode):

var subplans = new HashMap

var result = φ

for each vertex x in input in topological order:

preds = {subplans(y) for each predecessor y of x}
subplans(x) = compileOp(x, preds)

if x is a leaf:

result = result || subplans(x)

return result

The subplans variable remembers the compiled Naiad plan of each Pig logical oper-
ator visited. At each step, this plan is generated for the current operator by calling the
compileOp function with the operator to compile and its already-compiled predecessors.
This function will instantiate a Naiad implementation of the supplied operator, link it
to its compiled predecessors using Naiad connectors, and return the new Naiad plan
so obtained. Finally, the compiled plans of every leaf operator in the input are merged
together using the || Naiad connector.

The action of the compileOp function is determined by which specific operator it is
called with. In general, its action is to instantiate a Naiad vertex implementing the Pig
Latin operator, replicate it to provide data-parallelism, then link it with its compiled
predecessor in the correct way.

Replication How a vertex is replicated depends on the operator to compile. By
default, a LOAD operator will be replicated to match the number of HDFS blocks in the
input file, creating one Naiad vertex for each block; alternatively, a smaller number can
be specified manually to group multiple blocks. “Map-like” operators such as FILTER

are replicated to match the level of parallelism of their compiled predecessor. For other
operators, the desired level of parallelism is directly specified in the input Pig Latin
program, and defaults to one (i.e. non-parallel).

Linking “Map-like” operators and are straightforward to link. Others require to
insert additional operations such as partitioning (e.g. GROUP BY, JOIN). As examples,
table 6.1 gives the compilation routines for these different kinds operators, showing
how they are replicated and linked. Though here given as distinct, these routines can
be generalized to the majority of Pig Latin’s other operators. Some algorithms like
exotic joins or sorts however may require more complex, ad-hoc wiring.
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FILTER

pred0 >= Filter(...)nbOuts(pred0)

GROUP BY

pred0 >= Partition(...)nbOuts(pred0) >> Group(...)j

Note: j is specified in the input Pig Latin program (here j = 3).

JOIN (hash, k-way)

(pred0 >= Partition(...)nbOuts(pred0) >> NoOpj)

|| (pred1 >= Partition(...)nbOuts(pred1) >> NoOpj)

|| ...

|| (predk >= Partition(...)nbOuts(predk) >> NoOpj)

>= HashJoinj

Note: j is specified in the input program, and k is the number of the relations in
the join (here, j = 3 and k = 3). Chapter 7 describes the join algorithm in more

detail.

Table 6.1: Examples: compilation of some operators
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6.3.2 Implemented optimizations

Metadata tracking

This direct translation makes it easier to perform additional optimizations in the pro-
cess. In Chapter 5, we mentioned a specific optimization that was absent of Apache
Pig: Pig doesn’t track how intermediary data is partitioned or sorted. It will thus
sometimes compile MapReduce jobs whose sorting and shuffle phases are unnecessary
because of previous instructions. We’ve mentioned that implementing this with the
MapReduce back-end is difficult, as it requires walking across a two-level structure of
a physical plan inside a MapReduce plan.

On the other hand, notice that adding this optimization to our compiler is simple.
Along with the intermediary compiled plans, we need to remember what sorting and
partitioning plans (if any) were used. For example, when compiling a Pig Latin ORDER

BY x operation, we must remember that data coming out of the resulting Naiad plan
will be both sorted and partitioned by its field x. Now if the next operation is e.g.
GROUP BY x, we know that we can chain this operation directly to the results of ORDER
BY x, without inserting an unnecessary partitioning step.

Our implementation currently supports this for partitioning only, but does not track
ordering information at the moment.

Early partial aggregation

In order to be on par with Apache Pig, we also implemented an optimization mimicking
the use of the combiner feature of MapReduce: we track GROUP BY operators whose
results are used only as input to an algebraic functions such as COUNT or SUM. We replace
those with early partial aggregation to compute e.g. intermediary sums, followed by
global aggregation to put the intermediary results together. This dramatically decreases
the amount of data that has to be globally aggregated, as large numbers of items will
be replaced by e.g. their count or sum.

Note that, though our simple implementation imitates MapReduce’s combiner,
more complex and useful strategies for partial aggregation are possible with DFG frame-
works. For example, DryadLINQ [28] uses Dryad’s dynamic graph refinement feature to
generate aggregation trees at runtime, taking account of the cluster’s network topology
to minimize network interference.

6.3.3 Other possible optimizations

Though our compiler is most basic, it would be possible to perform more advanced
optimizations. Since shared-nothing parallel database engines use similar semantics as
Pig Latin and also model query plans as dataflow graphs, most optimizations performed
by such engines could be directly transposed to our system. Here follow a few of the
simpler examples.

Metadata-based algorithm selection The selection of Naiad operators and algo-
rithms to use for implementing a particular operation could be motivated by metadata
such as sorting information. For example, faster algorithms for JOIN or GROUP BY can
be used on sorted data. Currently, a Pig Latin program has to manually specify which
algorithm to use, relying on the user to guarantee the required metadata properties.
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Parallelism level selection Our compiler chooses the level of data-parallelism of an
operation without much consideration. A more sophisticated compiler could estimate
the amount of data expected to transit between subsequent operation, and use that to
select the appropriate level of data-parallelism. Such a heuristics could also have other
uses, such as for influencing the framework’s scheduling decisions.

Sampling-based partitioning For now, most operations that require partitioning
are subject to data skew: the partitioning function does not attempt to see if the
generated partitions will be of comparable size. The exception is our implementation
of Pig Latin’s ORDER BY operator which is a parallel sample-sort: the data is sampled
and partitioned by range so that each range is of approximately equal size. Though
required by the sample-sort algorithm, other aggregation operators might benefit from
sampling-based partitioning in the event of data skew.

Dynamic optimizations As stated before, Microsoft’s Dryad, unlike Naiad, in-
cludes a mechanism to refine the dataflow graph at runtime, using information not
available at compilation time. This could be used as a base to implement some of the
optimizations above, as well as other useful ones suggested by Isard et al. [17] such as
their strategies for partial aggregation already mentioned.

6.4 Summary

Although Naiad omits important scalability features and thus by no means offers the
same industrial strength as Dryad or MapReduce, it serves our purpose by providing a
programming model and execution semantics close to Dryad’s. This model has shown
us to be practically very suitable as a back-end for Pig Latin. We found that devel-
oping this simple compiler was simple and straightforward, especially in light of the
complexity of Apache Pig’s Hadoop back-end.

This leads us to believe that DFG models might be generally better than MapRe-
duce as compiler targets, although in a way that is difficult to quantify scientifically.
Nonetheless, the following chapters attempt to provide the intuition that this is the
case.



Chapter 7

Join algorithms in MapReduce and
Naiad

In order to provide concrete arguments for our comparative analysis of MapReduce
versus DFG with respect to the compilation of languages like Pig Latin, we will focus on
one common operation that these languages provide: the relational join. In particular,
when relevant, we will assume the common scenario where we want to join a large log
relation L with a smaller reference relation R. For example, L might contain a log of
user activity on a website, and R might contain static user data such as name, address,
etc...

This chapter thus recalls a series of well-known join algorithms, with outlines of
how they could be implemented in MapReduce (mostly based on [3]) and Naiad. We
consider unordered and unindexed relations, reflecting the common use case for such
systems (as opposed to specialized database management systems). As we will see,
most of these algorithms are not strictly MapReduce problems, and require extraneous
features and/or framework-specific tweaks for efficient MapReduce implementation.

In the following, we assume that L and R are physically files in a distributed
filesystem. They thus each consist in a set of chunks, which we call here logical splits,
scattered across different machines of the cluster. We use:

• l to denote the number of logical splits in L, and r that in R; and

• k to denote the number of logical splits in the output (i.e. the number of reducers
in a MapReduce setting).

l and r depend on input size, filesystem settings and user-provided parameters. De-
pending on the algorithm, k may be equal to l or r, or provided by the user.

7.1 Repartition join

The repartition join is a variant of the well-known sort-merge join, and is the most
commonly used join algorithm for MapReduce, and the default in Pig. Let us first recall
how sort-merge join works. Both relations are first sorted according to the desired join
key. Then, an interleaved scan of the sorted relations is performed in a way very similar
to the merge phase of the mergesort algorithm, during which corresponding tuples are
joined and outputted (see table 7.1 for an example).
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Step R (sorted) S (sorted) Output
1 →(a, k, l)

(b, o, p)

(c,m, n)

→(b, x)

(c, z)

2 (a, k, l)

→(b, o, p)

(c,m, n)

→(b, x)

(c, z)

(b, o, p, x)

3 (a, k, l)

→(b, o, p)

(c,m, n)

(b, x)

→(c, z)

4 (a, k, l)

(b, o, p)

→(c,m, n)

(b, x)

→(c, z)

(c,m, n, z)

Table 7.1: Example: merge phase of a sort-merge join. For both relations, the first
field is used as the join key.

The repartition join algorithm differs in that rather than individually sorting both
relations, we sort their concatenation, after tagging each tuple with a number repre-
senting which relation it belongs to. We then end up with a single list in which tuples
with corresponding join keys appear contiguously. We can then perform a linear scan
on this list, thus treating every join key in sorted order. As an example, if we apply the
sorting and tagging phases to the relations from the example in table 7.1, we obtain
the following list:

(a, k, l, 0)
(b, o, p, 0)
(b, x, 1)

}
(c,m, n, 0)
(c, z, 1)

}
The resulting list of tuples is ordered by join keys (here the first field). The braces

show the groups of tuples that will be joined by the final joining operation, i.e. tuples
with the same join key and different tags. This procedure can be done as a scan of the
list during which we buffer tuples that have the same join key. Once a tuple with a
different join key is reached, we output the cross-product between buffered tuples with
tag 0 and those with tag 1. We then clear the buffers and continue with the next join
key.

This latter procedure can be made more efficient if the relations were to be sorted
by both the join key and the originating relation number (as is actually the case in this
example). In this way, for any given key, all tuples from the first relation would appear
before the corresponding tuples from the other relation, making the final scan easier as
only tuples from the first relation have to be buffered (see [3]).
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Figure 7.1: Naiad repartition join for l = 3,r = 2 and k = 2

7.1.1 Repartition join in Naiad

We informally introduce the following Naiad operators:

• Tagn tags each incoming datum with number n then immediately broadcasts it

• Sort sorts and buffers incoming data, and flushes it all on EOF

• Merge merges sorted chunks of data (i.e. the same merge operation as in merge-
sort)

• MJoin performs the scan and join as described above

The repartition join can then be implemented as (see fig. 7.1):

(L >= Tag0)l || (R >= Tag1)r >= Sortl+r >= Partitionl+r >> Mergek >= MJoink

Sort, Partition, Merge and MJoin are all assumed to operate using the desired join
key. Note that the Partition step is only required to parallelize the Merge and MJoin
operations, i.e. when k > 1. Otherwise, the program can be written as:

(L >= Tag0)l || (R >= Tag1)r >= Sortl+r >> Merge >= MJoin

Also note that, although we used parallel merge-sort, any distributed sorting al-
gorithm can be used instead; only the Tagn and MJoin operations characterize the
repartition join algorithm. A more general form of the algorithm would thus be:

(L >= Tag0)l || (R >= Tag1)r >= (some distributed sort) >= MJoin

The || connector acts as a concatenation operator between tagged tuples from L
and R, which are then sorted and joined.

7.1.2 Repartition join in MapReduce

The repartition join is essentially a MapReduce problem: Tagn can be written as a map
function, MJoin as a reduce function, and the framework itself implements the Sort,
Partition and Merge phases as part of MapReduce’s shuffle phase. The algorithm could
be written as (in pseudocode):
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function map(key, value) {
   # key = null, value = tuple
   joinkey = get_join_key(value)
   if(input file == L):
      emit(joinkey, tag(value, 0))
   else: # input file == R
      emit(joinkey, tag(value, 1))
}

function reduce(key, values) {
   # key = join key, values = tuples
   first = {}
   second = {}
   foreach tuple in values {      
      if(gettag(tuple) == 0):
         add tuple to first 
      else: # gettag(tuple) == 1
         add tuple to second
   }
   foreach t1 in first {
      foreach t2 in second {
        emit(null, join(t1, t2))
      }
   }
}

Because we use the join key as the MapReduce key at the output of the map
function, the framework will collect tuples with the same join key together during the
shuffle phase. The reduce function will thus be called for each distinct join key, with
the list of tuples having that key. These tuples are then separated according to their
tag, and their cross-product is outputted.

Note however that this implementation still needs a small framework-specific fea-
ture: writing Tagn as a map function requires:

• that a single job can be assigned multiple (i.e. two) input files, and

• that the map function can inquire which input file its specific running instance is
working on, in order to know n.

Without these features, it would still be possible to implement the repartition join by
using two map-only pre-processing jobs for tagging the input. This however would
impose important overhead, as both relations would effectively have to be duplicated
in the distributed filesystem before joining could take place.

7.2 Broadcast join

Often, in practical scenarios, the reference table R is considerably smaller than the log
table L. In the particular case where R is small enough to fit in a single node’s main
memory, a much more network-efficient strategy is possible. By broadcasting R in its
entirety to every node, we can avoid moving L on the network altogether, and perform
the join locally for each split of L with any efficient sequential join algorithm such as
hash join.

7.2.1 Broadcast join in Naiad

Here we use the HashJoin operator defined in appendix section A.1. If r = 1, we can
simply write the algorithm as:
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(a) For l = 3 and r = 1 (b) For l = 3 and r = 2

Figure 7.2: Broadcast join with Naiad

J := HashJoinl

(Ll >= J) || (R >> J)

Here we see the importance of scheduling heuristics and hints to achieve the desired
effect. Indeed, efficient execution requires:

• that R, the operator reading relation R, gets scheduled as early as possible, and

• that each HashJoin gets scheduled on the same node as its preceding L, in order
to achieve the effect of not moving relation L over the network.

If r > 1, no-ops need to be inserted in order to correctly match inputs to outputs, as
our HashJoin uses input numbers to know which relation a tuple comes from:

J := HashJoinl

(Ll >= J) || (Rr >> NoOpl >= J)

Again, these no-ops will cause no performance drop, but only at the condition that
each is scheduled on the same node as its HashJoin successor. Fig. 7.2 illustrates both
versions.

Note that these implementations may create unnecessary network overhead when
several HashJoin operators end up running on the same node (a likely situation since l
is usually larger than the number of nodes). In this case, the framework will wastefully
end up sending R multiple times on the same network link. This can be solved, for
example, by creating a new kind of operator, of which each instance reads the entire
R relation and caches it to the local host if it isn’t already. Other such tricks can be
used instead, such as copying R beforehand, or increasing the distributed filesystem’s
replication factor. These is however no natural way to express such a broadcasting
operation in Naiad, nor does it seem possible to optimize such broadcasts automatically.

7.2.2 Broadcast join in MapReduce

Broadcast join can be easily implemented as a map-only job, without the sort, shuffle
and reduce phases. This however requires the framework to allow defining, in addition
to the map function, an init procedure with the ability to set up state variables to be
accessible across distinct invocations of the map function within the same task. This
procedure would fetch and hash the R relation. Then, tuples of L would be streamed
through the map function, each time joined with the corresponding tuples in R. Such
an implementation is provided by Pig under the name of fragment-replicate join, and
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behaves most identically to our Naiad implementation above. Blanas et al. [3] provide
a slightly more complex and better optimized version.

Note that the same limitation arises that we need to locally cache R at every node
if we don’t want to transfer it an unnecessary number of times. Again, a number of
tricks can be used, but it is worthy to note that neither MapReduce nor DFG allow
us to express this broadcasting operations in a natural way. This hints at a common
limitation of both paradigms, which we expand upon in the conclusion of this thesis.

7.3 Semi-join

If the reference table R is very large and contains many entries, it is possible, depending
on the situation, that only a minority of those entries are actually referenced in the
log table L. For example, R might contains data about all users of a web application,
while L might represent a few hours of activity logs, and thus reference relatively few
users despite being huge. Then, broadcasting R would imply broadcasting much more
tuples than is actually necessary. We can proceed more efficiently by first filtering R
to keep only tuples that have a match in L, using the following steps:

1. gather the set S of all distinct join keys in L, which we expect to be relatively
small;

2. broadcast S next to every split of R, and produce Rl by taking only tuples of R
whose join key appear in S;

3. join L with Rl using the broadcast join algorithm.

7.3.1 Semi-join in Naiad

We use of the following Naiad operators which we shall describe but not define:

• Project, shortened π, which extracts and outputs join keys from each incoming
tuple;

• Distinct, shortened 6=, which only outputs distinct values coming from its inputs,
for example by building a hash table; and

• InSet, shortened ∈, which takes a set S of values on one input, and outputs tuples
from the other input whose join keys appears in S.

The semi-join algorithm can then be expressed for example as follows (see fig. 7.3 for
illustration):

J := HashJoinl

A := Ll

B := ∈r >> NoOp

(A >= πl >= 6=l >> 6= >> B) || (Rr >= B >> J) || (A >= J)

Note that, once again, correct assignment of operators to cluster nodes is crucial
to achieve the desired effect. Also note that the algorithm exhibits the same problem
has the previous one, namely that it contains unoptimized broadcasting operations,
which prevent us from producing a useful implementation given the current state of
our runtime framework.
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Figure 7.3: Semi-join in Naiad for l = 3 and r = 2

7.3.2 Semi-join in MapReduce

We describe here the MapReduce implementation of the semi-join as given (in more
detail) in [3]. This algorithm is split in three distinct phases, each consisting of a
MapReduce job.

First phase is a MapReduce job to extract all distinct keys from L. The map
function uses a hash table, initialized in the init procedure, to output only records with
distinct join keys. The reduce function further eliminates duplicates and output the
complete set of distinct keys.

Second phase is run as a map-only job over R, again without sort, shuffle or reduce
phases. The init procedure loads the output of the first phase, and stores it in a hash
table. Then, the map function outputs each record from R whose join keys are present
in the hash table.

Final phase is the broadcast join between L and the output of the second phase,
and thus also a map-only job as described above.

Blanas et al. [3] find this algorithm inefficient, because of the overhead of running
three MapReduce jobs, and especially of scanning L twice. It would be useful to know
if using a DFG framework might improve this; we have however been unable to produce
an efficient Naiad implementation, as will be discussed in Chapter 8.

7.4 Hash join

Though classically one of the most used join algorithms both in sequential and parallel
settings, it is the least natural to write in MapReduce. Indeed, while the repartition
join was the most natural because of (almost) being a purely MapReduce problem,
hash join is the most alien and not a MapReduce problem at all.
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Figure 7.4: Hash join for l = 3, r = 2 and k = 2

As a recall, parallel hash-join consists in hash-partitioning both input relations
according to join keys, then running a sequential hash-join on each pair of corresponding
partitions.

7.4.1 Hash join in Naiad

Unlike its MapReduce counterpart, the Naiad version of hash join is pretty natural and
straightforward, given some of the same operators we have been using so far (illustration
on fig. 7.4):

J := HashJoinl

(Ll >= Partitionl >> NoOpk >= J) || (Rr >= Partitionr >> NoOpk >= J)

We assume Partition to operate on the desired join keys, and to use the same hash
function as the HashJoin operator. Like before, NoOps are overhead-free at the condition
that they be scheduled correctly by the framework.

7.4.2 Hash join in MapReduce

As we mentioned, hash join is more awkward to formulate as a MapReduce problem, for
reasons that outline the relative rigidity of the MapReduce platform. Indeed, the issue
is that while it could make good use of the map, shuffle and reduce phases, it doesn’t
require the implicit sorting which happens in between these phases, and which cannot
be explicitly skipped on implementations such as Hadoop. This is why sort-merge-like
joins are often used with these platforms, despite the known fact that hash join usually
works better in practice. To the best of our knowledge, no implementation of hash join
for MapReduce has been proposed in literature yet.

It can, however, be implemented as a sequence of three map-only jobs, that them-
selves implement the required shuffle phase. The first two jobs perform the partitioning
operation for the respective input relations, and write the resulting partitions directly
as intermediary files instead of yielding them to the framework. The third job, instead
of getting its input data from the framework, gathers and reads itself the corresponding
partitions of L and R to perform the join (see fig. 7.5).

Note that this is bad usage of the MapReduce framework, as we need to either
discard or re-implement core features of the platform, such as managing input and
output, which are especially non-trivial with respect to scalability requirements such
as fault tolerance. For maximum parallelization, we also need to manage job scheduling
manually: the first two jobs can be run simultaneously, but must be finished before the
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Figure 7.5: Hash join in MapReduce

last one can start. Still, the fact that it possible (if convoluted) to do all of this will be
used for our further comparison of MapReduce against DFG frameworks.

7.5 Summary

We have outlined four common types of join algorithms. Although all of them can tech-
nically be implemented in MapReduce, we saw that only the repartition join algorithm
really has a MapReduce dataflow; the other ones need to work around the MapReduce
model somewhat in order to fit.

Although we focused on joins, other operations can have efficient and useful algo-
rithms that are not strictly MapReduce problems. For example, Pig Latin’s default
algorithm for ORDER BY operations is a parallel sample-sort, another algorithm with a
non-MapReduce dataflow.

In the next chapter we show that, although not necessary less efficient from a
performance point-of-view, this kind of usage of MapReduce amounts to using a DFG
framework that is particularly difficult to program.



Chapter 8

Analysis of MapReduce versus DFG

In Chapter 7, we have seen how common join algorithm can be (and are being) im-
plemented in MapReduce. However, as will be further detailed in this chapter, these
algorithms are not native MapReduce problems and require “cheating” on the pure
MapReduce programming model, by either requiring specific framework features or
working around them.

This chapter will start with showing that if we accept this cheating, then MapRe-
duce is equally powerful as DFG programming models for expressing scalable parallel
algorithms. In particular, we will show that these cheating tricks themselves contain
the differences between both paradigms. Then, we will argue in favor of DFG models
against MapReduce for the purpose of compiling higher-level languages such as Pig
Latin, using experimental results from our platform as supporting data.

8.1 MapReduce cheating tricks & equivalence to DFG

Tricks

We have seen that efficient MapReduce implementation of popular join algorithms
requires, among others, the following four tricks:

1. Sideways input/output : using effectful map and/or reduce functions to read
and/or write data besides the framework-assigned key-value pair streams. Used
by the broadcast join, semi-join and hash join algorithms.

2. Map-only jobs: building jobs that do not fit into a map-reduce structure as a
sequence of map-only jobs without shuffle or reduce phases. A map-only job is
a MapReduce job with no reduce function, and thus consists only in the map
phase whose output is considered as that of the job. Used by the broadcast join,
semi-join and hash join algorithms.

3. Task differentiation: getting different tasks from the same job to perform different
work, i.e. to run different map (or reduce) functions. Used by the repartition
join and hash join algorithms.

4. Job-level scheduling : for algorithms written as multiple inter-dependent jobs,
obtaining job-level parallelism by scheduling these jobs according to their con-
straints of precedence. Used by the hash join and, in some measure, the semi-join
algorithms.
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Figure 8.1: Embedding linear lists into single vertices

By nature, any MapReduce framework allows the use of the first trick. The Hadoop
framework explicitly provides means of using the last three. Pig currently leverages all
four of these tricks.

Equivalence

We will now show that any DFG program can be transformed into a functionally
equivalent and equally scalable set of MapReduce programs that makes use of these
four tricks, by performing the following steps.

1. We transform each vertex of the DFG program into a map task.

• Vertices with more than one incoming and/or outgoing edges can be rewrit-
ten using trick no. 1 to simulate the additional channels.

• Top-level (input) vertices are replaced with the MapReduce framework’s
means for data input. Hadoop for example allows to define custom data
input classes, which can be used to encapsulate a Naiad input vertex.

• As an optimization, any subgraph of the DFG program that is effectively a
linear list can be treated as a single vertex performing the same computation
(e.g. see fig. 8.1).

2. Then, these tasks can be grouped into map-only jobs, using tricks no. 2 and 3.

3. Finally, these jobs can be submitted to the MapReduce framework with the cor-
rect precedence constraints as per trick no. 4.

Synchronization constraints of the resulting program depend on the assignment of
vertex-emulating map tasks into map-only jobs. It is however always possible to do this
repartition without adding any constraint not present in the original DFG program;
the simplest way to do so would be to put each task in its own map-only job.

We say that the original and transformed versions of the program are equally scal-
able because the level of parallelism of both versions are identical and limited only
by the amount of data. Any additional parallelism in the DFG version, such as that
offered by pipelining, can only contribute by a constant factor. Because of produc-
ing data-parallel programs, both MapReduce and DFG can be considered maximally
scalable.

Note that the inverse transformation of a MapReduce program into a DFG one is
trivial and require no sort of tricks, as MapReduce really is a special case of DFG.
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Example Let us provide an example of this transformation using the word counting
program described in Chapter 6, whose graph is recalled for convenience in fig. 8.2a.
Fig. 8.2b shows the results of the first transformation step. W and Σ vertices have each
been made into a map function; each TI vertex has been integrated as data input into
the map task of its W successor.

Fig. 8.2c shows the result of the second transformation step: map tasks have been
grouped into two map-only jobs. Note that this arrangement of jobs respects the
synchronization constraint of the original program; namely, no Σ operator can start
before all the W ones have finished processing. These jobs can then be submitted to the
MapReduce framework in the right order as per the third step.

When we presented our Naiad version of this word-counting program, we mentioned
how it was theoretically more efficient than the naive MapReduce version that we
have shown in Chapter 4. For the anecdote, note that this is still the case with this
transformed version, although no one would likely write it that way in MapReduce.

For another example of this transformation, consider the hash join algorithms pre-
sented in section 7.4: the MapReduce version described and illustrated closely corre-
sponds to the Naiad version with this transformation applied.

8.2 Theoretical argumentation

Given this equivalence, one can wonder: why use MapReduce as a target platform for
higher-level languages in the first place? Indeed, by using these tricks, these languages
are effectively targeting an awkward and convoluted implementation of DFG, making
compilation and optimization of programs more tricky than it should be. Why not
target a DFG framework instead?

An instruction set analogy

The reason why MapReduce became so popular is that it is easy both to implement
in a highly scalable way, and to write programs for. With respect to that last aspect,
an analogy can be drawn with CISC and RISC instruction sets. CISC processors were
intended to be programmed by humans; to that end, they feature complex instructions
that performed large multi-cycle operations. Likewise, MapReduce was designed for
human programmers and performs large jobs that each include sorting, partitioning
and aggregation.

RISC instructions sets on the other hand were designed specifically for use as com-
piler targets. They provide a set of basic, orthogonal instructions, several of which must
be chained to replicate the effect of a complex CISC instruction; in effect, they provide
a lower-level programming model. This is similar in principle with the way DFG is
more general and lower-level than MapReduce: a larger DFG program is required to
replicate the effect of a single MapReduce one.

This analogy provides the intuition as to why we believe DFG to be a better choice
than MapReduce as a compiler target for higher-level languages. The fact that we were
able to produce a working compiler for Pig Latin with only about one man-month of
work supports that hypothesis. As we will see, experimental results indicate that the
resulting compiler is at least as efficient as the one targeting MapReduce.
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(a) Original program

(b) First step

(c) Second & third steps

Figure 8.2: DFG to MapReduce transformation example
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Implementation flexibility

While we argue that DFG makes writing a compiler simpler, it can also be argued
that implementing the DFG framework itself is more complex than with MapReduce.
There is a larger degree of freedom in design, and non-trivial questions must be an-
swered depending on the end goal of the framework. How to manage vertex scheduling?
How do vertices exchange data? Do we prefer aggressive pipelining, or frequent check-
pointing? Some choices will lead to a faster but less scalable implementation and vice
versa. Though implementing MapReduce gives rise to the same dilemmas, they are
much simplified by the constrained programming model.

On the other hand, such flexibility may be useful to broaden the applicability range
of programs written for DFG frameworks. It would be useful, for example, to be able
to transform a high-speed, low-latency parallel database system into a highly scalable
data mining system by only tuning framework parameters. Pig Latin, currently limited
to the latter kind of system, could be chosen as either depending on the situation.

MapReduce, DFG and parallel databases

To better illustrate that last point, let us delve a little into shared-nothing parallel
databases and how they differ from MapReduce systems.

Database systems are usually designed for high speed and low latency rather than
high scalability. They completely manage the data they are entrusted with; they man-
age how it is sorted, indexed, formatted and partitioned across the cluster, with the
objective of making queries fast. They allow queries composed of operations from a
fixed set, which they know how to best optimize based on their data storage schemes.
They are usually designed to run on smaller, more reliable clusters, and thus make
little or no use of scalability features such as replication, checkpointing or speculative
execution which increase latency.

MapReduce systems on the other hand are designed for ad-hoc processing of any
kind of data. Though the user may decide to structure, format, sort and partition
their data to allow for more efficient treatment, the framework itself makes no use
of this information; optimizations based on such metadata are left to the user. They
allow any query expressible as map and reduce functions, which themselves can contain
anything. Following Google’s original implementation, they have no regard for latency
but focus on massive scalability; if the system is full or too slow, one can blindly add
more computers to increase its processing capacity, thanks to the scalability features
mentioned above.

Thus, the difference between both kinds of systems may be divided in three aspects:

1. the extent to which the system manages how data is physically stored;

2. the constraints the system puts on what queries can be expressed; and,

3. the assumptions that the system makes about the target cluster.

Many practical systems attempt to blend the different approaches to these aspects.
Systems like Hive [24] or HadoopDB [2] bring MapReduce closer to database systems
with respect to the first and second aspect. Database systems often allow user-defined
function, and some [13] even include map and reduce instructions, bringing them closer
to MapReduce with respect to the second aspect. Good database systems allow some
degree of control over the third aspect.
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Figure 8.3: MapReduce, DFG and databases

These differences are thus in no way intrinsic and merely result from different goals
and scopes. Several papers (e.g. [10, 19, 23]) comparing MapReduce with parallel
database systems indeed conclude that both kinds of system differ by their application
scope; MapReduce outperforms databases on simple transforms of huge datasets on
very large clusters, while databases shine for complex queries on smaller datasets and
clusters. We argue that DFG frameworks are general enough to cover both situations
and everything in-between, as they can be easily used to implement either kind of
system.

Example: HadoopDB As we mentioned above, attempts to broaden the scope of
either kind of system are made by integrating features from one kind into the other. Let
us take HadoopDB as a popular example of such a “hybrid” system. Its goal is to blend
the excellent scalability of Hadoop/MapReduce with features from database systems
enabling more efficient processing of structured data. It allows to store relational tables
with metadata such as schemas, indexes, and so on to allow generating more efficient
query plans. It provides features like updates, ubiquitous to database systems but
normally impossible with Hadoop due to its heavyweight HDFS filesystem.

To provide all this on top of Hadoop and HDFS requires tricks, compromises, and a
complex architecture. We can also expect HadoopDB’s query compiler to be subjected
to the same limitations as Pig Latin’s. As a result, while HadoopDB succeeds in pro-
viding an extremely scalable database system, it remains much less efficient than actual
parallel databases at smaller scales, with homogeneous clusters and in the absence of
failures.

By taking features from one kind of system and integrating it into the other, we
do obtain a useful hybrid (e.g. with HadoopDB, a system faster than MapReduce and
more scalable than a database). However, we believe that this kind of approach is not
the best. Instead, we believe that a flexible, general-purpose DFG framework would
constitute a better basis for both kinds of systems by allowing to cherry-pick desirable
features.

For example, let us say that we want a highly scalable database system. We think of
HadoopDB’s approach as taking a highly scalable system and “tweaking” it into being
a database. Our approach would be to have a DFG-based database system, and make
it scalable by increasing checkpointing, reducing task granularity, enabling speculative
execution, and so on.

A simplistic experiment will be made to illustrate the point that a DFG framework
can be easily adapted to different kinds of requirements, by performing the reverse oper-
ation: taking a Pig Latin program and running it in a way that encourages performance
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over scalability, by assuming a reliable and homogeneous cluster.

8.3 Experiments

In this section, we present two experiments with our Naiad system and its Pig Latin
compiler. The first experiment compares the runtime performance of our compiler
against the Apache Pig compiler targeting Hadoop. The second experiment outlines
our point about the relative flexibility of DFG systems.

8.3.1 Setting

Cluster configuration

Our experiments were run on a small cluster of four computers linked by a 100Mbit/s
Ethernet LAN. Each computer has a dual-core CPU running at a frequency of 800MHz
and a gigabyte of main memory. Software-wise, each system runs a Linux installation,
the Hadoop HDFS filesystem software, and either Hadoop MapReduce or the Naiad
runtime depending on the experiment. A fifth computer is used as the coordinator, i.e.
the Hadoop and Naiad master node.

Data

Since our experiments involve joining a reference table with a log table, we wrote
routines to generate suitable data for these tables. The reference table, users, has two
fields: a unique name field, and a larger userdata field of random padding. The log
table, log, has three fields: a user field referencing the users table, a numeric field x,
and a logdata field of random padding.

The generating procedure can be parametrized to specify the on-disk file size of
either table, as well as the fraction of users from the users table that will be referenced
in the log table (thus allowing to choose the selectivity of the join between them). In
addition, we can specify a fraction of entries in the log table which correspond to no
user in the reference table. For both experiments, we used values of respectively .8 and
.1 for these fractions.

Both tables reside on a HDFS distributed filesystem and are formatted as comma-
separated values: each line represents a tuple, and commas separate tuple fields

8.3.2 First experiment: compilation & optimization

Evaluation metric

In this experiment, we want to compare our compiler’s performance against that of the
one targeting Hadoop. The difficulty is that we do not want to measure performance
difference between the Hadoop and Naiad platforms, but between programs compiled
with Pig-Hadoop and Pig-Naiad.

Hadoop and Naiad themselves have architectural differences that make them in-
comparable in performance. Hadoop is industrially strong and designed to run reliably
on clusters of thousands of computers. Naiad was developed for the very purpose of
these small-scale experiments, doing away with failure tolerance and checkpointing.

To palliate this problem, we will only compare either framework with itself. The
running time of the Pig Latin query we use for this experiment will be compared to
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that of a baseline, hand-optimized MapReduce program specific to the task. Since we
have our own implementation of MapReduce on top of Naiad, we are able to run this
baseline program on either platform, and compare the execution time with those of
the Pig query running on the same platform. This method factors away the difference
between the platforms and exposes that between the compilers. The following test
hints this measurement to be sufficiently accurate for our need.

Each test is ran many times, but rather than an average, we keep the lowest ob-
tained running time as the result. This is to eliminate interference due to chance or
framework quirks, and only retain the running time of the program itself. For example,
the scheduling strategy of our framework is not perfect and not always deterministic,
yielding some small variance in a program’s running time. By keeping only the best
run, we simulate a framework with a close-to-perfect scheduling behavior.

The results in this section are measured with a 4 gigabytes log table and a 1 gigabyte
reference table. Given the padding settings used, this amounts to about one million
users and four million log entries.

Test query

The query for this experiment consists in joining the users and log tables, grouping
the result of the join by user, and computing the sum of the log field x for each user.
This is expressed in Pig Latin as follows:

users = LOAD ’users’ USING PigStorage(’,’)

AS (name:chararray,userdata:bytearray);

users2 = FOREACH users GENERATE name;

log = LOAD ’log’ USING PigStorage(’,’)

AS (user:chararray,x:double,logdata:bytearray);

log2 = FOREACH log GENERATE user,x;

joined = JOIN users2 BY name, log2 BY user PARALLEL 16;

grouped = GROUP joined BY user PARALLEL 16;

sums = FOREACH grouped GENERATE group,SUM(joined.x);

STORE sums INTO ’sums’ USING PigStorage(’,’);

As explained in Chapter 5, the Apache Pig compiler will transform this query into
a sequence of two MapReduce jobs: one for the JOIN operation, and another for the
GROUP operation. This is because Apache Pig lacks the optimization to make it realize
that the tuples are already grouped by user after the join.

This query is useful with respect to our evaluation metric, as it can actually be
written as a single, efficient MapReduce program. Instead of computing the join, then
the group, then the sum, we can write the following MapReduce program than computes
the sum directly:
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Hadoop Naiad
Baseline MapReduce 220s 105s

Pig Latin 390s = 1.77× 190s = 1.80×

Table 8.1: Results for the first test

function map(key, value) {
   # key = null, value = line of text
   fields = split value around ','
   if(input file == 'users'):
      emit(fields[0], '1')
   else: # input file == 'log'
      emit(fields[0], '2' + fields[1])
}

function reduce(key, values) {
   # key = user name, values = tuples
   sum = 0.0
   ref = false
   foreach value in values {
      tblnum = first character of value
      data = rest of value
      if(tblnum == '1'):
         ref = true
      else: # tblnum == '2'
         sum += parse_number(data)
   }
   if(ref && sum > 0.0):
      emit(null, key + ',' + sum)
}

This is a variant of the repartition join in which, rather than joining tuples, we
immediately sum values of x for entries of the log table, and output the sum if an
entry from the users table has been found.

First test: validating the metric

To get the feel that our chosen evaluation metric is suitable, we first tweak our Pig to
Naiad compiler such that it produces an output program as close as possible to what
the Apache compiler would produce. To that end, we force the use of the repartition
join as a join algorithm, and disable our “metadata tracking” optimization not present
in Apache Pig. Hadoop’s combiner optimization is used, as well as our equivalent early
partial aggregation. Table 8.1 gives the obtained results.

These results mean that the Apache Pig compiler yields a program that is 1.77
times slower than the baseline MapReduce program executed on Hadoop, and our Pig
to Naiad compiler one that is 1.8 times slower than the same baseline program running
on our own implementation of MapReduce on top of Naiad. From this, we interpret
that both compilers produce similar results when compiling programs to use the same
algorithms and optimizations. The slightly worse figure for Naiad hints at a small
overhead in our implementation of Pig Latin operators.

Several versions of this “calibration” test were devised, each time yielding very close
results. This encourages us to believe that our evaluation metric is relevant.
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Second test: hash join algorithm

Apache Pig does not provide the hash join algorithm, and we have explained in Chapter
7 why MapReduce is ill-suited for implementing it. Since hash join is known to usually
perform better than forms of sort-merge joins, it might constitute one of the most
obvious reasons why to implement Pig Latin on top of DFG instead. Here we measure
the improvement obtained for this query by using hash join instead of repartition join.

We measured a running time of 178 seconds, or 1.69 times worse than the baseline
program, i.e. about 7% better than with the repartition join. We conclude that, as
was expected, hash join is beneficial for such queries.

Third test: metadata tracking

For this last test, we enabled our metadata tracking optimization. This means that
no useless partitioning step will be inserted between the JOIN and GROUP operations,
yielding a program closer to the baseline MapReduce one. Though a useless partitioning
step does not seem more harmful than a no-op at first glance, the difference lies in the
fact that, since the framework cannot know that only one outgoing link of a partitioning
operator will carry data, it has no incentive to schedule that particular link locally. The
optimized version will thus avoid any data serialization and network transfer between
the JOIN and GROUP phases.

We measured a running time of 165 seconds, or 1.57 times better than the baseline
program. This is thus about 8% better than without the optimization, and 15% better
than the version with the repartition join. Though relatively small with this query, the
improvement could be much more dramatic in situations where larger amounts of data
must transit between the join and group operators.

Conclusion

The results of this first experiment suggest the following of our points:

• DFG is as good a back-end as MapReduce, given similar compilers;

• DFG allows implementing useful algorithms that are ill-suited to MapReduce;
and,

• some useful optimizations are easier to integrate into a compiler targeting DFG
(cf. chapters 5 and 6).

More importantly, a relatively small amount of work yielded a compiler that is as or
more efficient than the much more complex one from Apache Pig (at least for this
particular query). Although our compiler is slightly incomplete and not industrially
strong, we can grossly compare this difference in complexity by observing that Apache
Pig’s physical layer is composed of about 25 thousands of lines of Java code, while ours
is about one thousand lines of Scala code (n.b. these counts exclude blank lines and
comments).

8.3.3 Second experiment: framework flexibility

We mentioned our belief that the flexibility of implementation of DFG frameworks can
broaden the application scope of higher-level languages targeting them. One of the
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reasons for that comes from the possibility of applying pipelining: rather than each
DFG vertex consuming its whole input and producing its whole output, we can have
them processing smaller batches, enabling them to work in an “assembly line” fashion.
This can provide the following benefits:

• pipelining (if well-tuned) can lessen processing times by increasing resource uti-
lization;

• a query can start producing early results a long time before its completion, which
can be useful in real-time scenarios, e.g. when building a webpage to show query
results;

• it allows continuous querying, i.e. queries over moving data streams rather than
fixed datasets (as in e.g. [6]).

Although pipelining is partially applicable to MapReduce [7], it is limited by the sorting
step between the map and reduce phases. Sorting is indeed a blocking operation, i.e. it
cannot produce results until all input data is known. In contrast, a DFG program does
not mandate such a blocking operation. We present the following small experiment
to show how an implementation of Pig Latin on top of DFG can provide it with the
benefits outlined in the first two points above (we shall not delve into the last one).

Data, query & setting

We use the same data generating procedure as in the first experiment, but with a
smaller log table of only one gigabyte (or about one million log entries). The query
is a simple relational join; it is the same as before without the last two operations of
grouping and summing. Since our hash join implementation is fully pipelining, the
complete query can be run as a pipeline. In this scenario, all Naiad vertices in the
compiled query are running simultaneously from the start. We can make that happen
by tweaking some of Naiad’s parameters.

1. We reduce the parallelism level of the JOIN instruction from 16 (as in the first
experiment) to four, the number of computers in our test cluster.

2. We also force the parallelism level of each LOAD operation to four (cf. Section 6.3).

3. We remove the limit on how many operators can be hosted on a Naiad slave node
at the same time.

4. Finally, we reduce the batch size parameter (cf. Section 6.2) to favor rapid descent
of data into the pipeline.

From the same query, we thus obtain a program that is optimized towards latency
rather than scalability, and provides the benefits of pipelined execution.

Experiment

We compare running times of this query with and without the parameter tweaks listed
above, yielding the results in table 8.2. We found the pipelined version to be faster
and much more predictable than the normal version. Also, as expected, we found the
pipelined version to start producing results much sooner.
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Normal Fully pipelined
Best running time 53s 47s

Average running time 59s 48s

Earliest results 42s 17s

Table 8.2: Results of the second experiment

Note that these results must be taken with a grain of salt. The performance of the
non-pipelined version depends much more on the scheduling strategies of the framework
than that the pipelined version. Additionally, pipeline tuning is a delicate subject in
itself, into which we haven’t much delved in the scope of this thesis.

Conclusion

Though we cannot make any strong conclusion from this experiment, it outlines the
fact that DFG frameworks allow more variation in the way programs are run than
MapReduce. As stated before, fully pipelined execution can bring more uses to a
language like Pig Latin than what is was initially designed for.

It is however important to remember that full pipelining is a trade-off. It removes
important scalability properties like the tolerance of failures, stragglers, network con-
gestion, etc... Whatever schemes we use to counter these events, any of them happening
on even a single computer will inevitably slow down the complete program.

Full pipelining also places additional constraints on memory. For example, recall
that our hash join operator remembers all of its input in main-memory hash tables.
Thus, in order for the pipelined program to work on our cluster, we must ensure that
each computer has enough memory to hold a quarter of each input relation. This makes
it impossible to join relations larger than the total main-memory in the cluster.

8.3.4 Unperformed experiments

Semi-join Although relevant to the comparison between DFG and MapReduce, we
have been unable to perform experiments with the semi-join algorithm. The Naiad
model’s limitation regarding data broadcasting (cf. Section 7.2), along with other
quirks in our implementation, prevent us from easily producing an efficient version of
the algorithm.

Speedup, scaleup, ... Although standard metrics used in many works regarding
parallel and distributed computing, we have not measured the properties of speedup
or scaleup of our system. Recall that speedup indicates the measure by which the
running time of a program changes with the addition of computational resources, and
scaleup that by which it changes with the addition of both resources and input data in
equal proportions. Perfect speedup would mean that the computation time decreases
linearly, and perfect scaleup that it remains constant.

We believe these metrics to be irrelevant to this thesis. It should be obvious that
both MapReduce and Naiad, as programming models, have the potential for excellent
figures of speedup and scaleup. Any actual measurement would be indicative only of
either framework’s implementation quality, and would not fuel the comparison between
the models themselves.
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8.4 Summary

We have given the intuition that, although not theoretically more efficient, DFG frame-
works ease the development of more efficient compilers and systems than MapReduce
by allowing the natural expression of a more diverse set of algorithms, by providing
more freedom on how programs are executed, and by generally being “simpler to target”.
Although very limited in scope, our experiments go towards that conclusion.

As we mentioned, MapReduce is often compared to shared-nothing databases sys-
tems, with the conclusion that both do not serve the same purpose. Since both kinds
of systems are theoretically rooted in dataflow programming, our belief is that a well-
designed DFG framework could serve both purposes by providing a lower-level model
upon which either kind of abstraction can be built.

We see DFG models as potential “assembly languages” for data-parallel programs.



Chapter 9

Conclusion

In this thesis, we have compared the increasingly popular cluster computing model
MapReduce with the more general model of dataflow graphs (DFG), with respect to
the compilation of higher-level languages. Using the Pig Latin language and its imple-
mentation as a base, we have studied how such a language is compiled for execution
on a MapReduce platform, focusing our exposition on one common operation of the
language: the relational join.

Using the relational join as an example, we have shown that the pure MapReduce
model is insufficient for efficient implementation of such a language, and that practical
systems such as Apache Pig use a series of tricks to step out of this model and pro-
vide efficient algorithms. We have identified these tricks, and shown that they actually
contain the difference between MapReduce and DFG-based models. Targeting MapRe-
duce while using them comes to targeting a convoluted DFG framework; so convoluted
that some algorithms, such as hash join, remain unimplemented on top of MapReduce,
despite being standard in other contexts.

We have given the intuition as to why a constrained target programming model like
MapReduce’s complicates the implementation of compilers and optimizers, and how
a DFG-based model, though arguably more difficult to program directly, was much
easier to target. This intuition is reinforced by the following practical work we have
accomplished during the course of this thesis.

To gain practical insight into the matter, we have developed Naiad, a distributed
implementation of the dataflow graph model inspired by Microsoft’s Dryad, as well as
a new back-end to the Pig Latin compiler targeting it. We have used it to perform
experiments, showing that useful algorithms and optimizations that would be impracti-
cal to integrate into the original MapReduce-based back-end were simple to implement
in ours. We have also shown that by changing framework parameters, the same pro-
gram could be executed in ways not possible with a MapReduce framework, such as
full-program pipelined execution.

We have briefly written about shared-nothing parallel databases, which are usually
considered by the literature to be either competing or complementary to MapReduce-
based systems. We have argued that a well-designed DFG-based framework could
subsume both and be used to implement either, conciliating both approaches.
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(a) Hash join algorithm

(b) Broadcast join algorithm

Figure 9.1: Proposed new DFG-based model: examples

Future directions

This thesis lacks experiments at scale, and the study of related concepts regarding the
implementation of a DFG framework. Features like checkpointing, re-execution and
speculative execution, essential for good scalability properties and simple to implement
on a MapReduce platform, become more complex in a DFG system, especially in the
presence of the kind of pipelining between operators that our implementation performs.
Work must be done to see how these features can be efficiently integrated while retaining
the flexibility of our implementation.

Vertex scheduling, an important issue for a DFG framework, is done in our system
using intuition-based heuristics that lack any rigorous scientific basis. A more in-depth
study of this issue would be essential for building a production-quality system. As we
have outlined, this issue is important not only at the level of the framework but also
at that of compilers targeting it, as efficient scheduling may depend on the semantics
of the program to run.

Finally, and most importantly, our study has revealed at least one common limita-
tion of MapReduce and our DFG-based model, namely the impossibility to naturally
express broadcasts (cf. Section 7.2). To lift this limitation and provide other bene-
fits such as even more implementation flexibility, we propose the following foundation
for another kind of DFG-based model, borrowing traits from both Naiad/Dryad and
MapReduce.

Rather than the explicitly data-parallel dataflow graphs that Naiad and Dryad
use, we propose a model in which data parallelism is implicitly derived, for example
from labels assigned to edges. For example, an edge could be straight, partitioning, or
broadcasting. Figure 9.1 shows what the hash join and broadcast join algorithms that
we presented in Chapter 7 might look like with this new model.

Our intuition is that such a model would both be even easier to target and allow for a
better implementation, by providing the framework with more useful information about
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the program. In particular, broadcasts would now be easy to identify and optimize;
we also believe that other sorts of scheduling freedom and opportunities would become
available. Such a model would have both the flexibility of Naiad and the simplicity and
implicit parallelism of MapReduce.

We thus believe the next step in continuation of our work in this thesis to be the
investigation of how this kind of programming model can be defined and implemented.
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Listings & source code

A.1 Hash join operator

This is our Naiad operator for hash join. This version is specialized for the examples in
this thesis, i.e it only computes two-way inner equi-joins. Our actual implementation
follows the same lines but is generalized to all kinds of n-way joins.

We use:

• ~T to denote the set of all tuples,

• K to denote the set of all join keys, and

• ~T 7−→ K to denote the set of functions from ~T to K

HashJoin ( key0 : ~T 7−→ K , key1 : ~T 7−→ K ) {
var t ab l e 0 = new HashMap
var t ab l e 1 = new HashMap

process ( i : N , ~t : ~T ) {
j = 1− i // the o ther r e l a t i o n

for a l l (k , ~u) in t ab l e j such that k =keyi(~t) :
broadcast (~t j o i n ed with ~u)

i f ( not EOF(j ) ) :
i n s e r t ( keyi(~t) , ~t) i n to t ab l e i

}
}

This is a symmetrical pipelining hash join, as documented for example in [26]: it
incrementally builds hash tables for both relations and produces output tuples as soon
as available. Following our API for Naiad operators, it treats one incoming tuple ~t at
a time, with the input number i indicating which relation it came from.

This particular implementation allows for some usage flexibility: because of the
condition on the last statement, we can avoid hashing one of the relations by ensuring
that the other one is completely processed first (e.g. through scheduling rules).
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A.2 Naiad & Pig Latin compiler

The source code for Naiad and the Pig Latin back-end compiler are available at the
following URL:

http://alturl.com/nf4uh

It includes a binary version of Apache Pig modified to accommodate our new back-end,
and is packaged with a build system which will fetch all other necessary libraries and
compilers.

http://alturl.com/nf4uh


Appendix B

Internship report

This appendix is a re-transcription of the report that I submitted at the end of my
internship in the Research & Development division of the Euranova consulting company.
This internship provided a good opportunity to obtain familiarity with the Pig and
Hadoop platforms and their source code, which was necessary for the completion of
thesis.

B.1 Introduction & scope

The goal of this internship was to study Pig Latin’s storage abstraction layer, to eval-
uate the feasibility and eventual benefits of adapting it to another storage engine than
the default, and finally to produce a working proof-of-concept of such an adapter for a
non-relational database engine of choice.

B.1.1 Motivations

By default, Pig Latin reads data from flat files scattered across a distributed filesystem:
HDFS. This filesystem is suitable for its own purpose: storing very large files, across
hundreds computing nodes, in a scalable way. For Pig Latin, it means that we can
run queries on files of any size, no matter how humongous, as long as these files are
distributed across sufficiently many computers.

Before we can do that however, the data we’re interested in has to get into this
filesystem in the first place. Data of that scale is most commonly generated by website
databases or logs, which output data at a fast pace, and need to do so without too
much latency so as to quickly resume serving the users. Because of its very specific
design goal of being scalable, HDFS cannot be used to directly store this data:

• write latency is much too high;

• files are not readily editable, appendable, or even seekable.

Thus, data typically has to be collected incrementally from its source, to be warehoused
into HDFS; this middle step can be done manually, or with ad-hoc programs and scripts.
This places a technological gap between the practices that generate useful data, and
that of performing large-scale analysis on it. By creating a bridge between large scale
systems like Hadoop and Pig, and smaller-scale databases more suitable for the data-
generating processes, we can fill this gap, and leverage Pig for a larger part of the data
warehousing/data mining process than before.
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B.1.2 Choosing a suitable engine

We then need to choose a target storage engine for our proof-of-concept implementation.
The trade-off we need to make is between a system that offers the interoperability
benefits outlined in the previous section, and one that scales across a cluster so as to
offer performances comparable to those of Pig on HDFS. MongoDB was chosen for a
number of reasons, among which:

• it uses a data-model that matches more or less well with Pig Latin’s;

• it offers data replication and sharding, i.e. partitioning of the data across multiple
nodes;

• it can expose sharding internals to clients, which is required for our storage back-
end to run Pig Latin queries in a distributed fashion.

Unfortunately, it turned out that some other implementation details of MongoDB make
it difficult to use it as an efficient back-end for Pig; this will be explained in Section
B.3.2.

B.2 Overview of Pig’s storage abstraction layer

Foreword The produced proof-of-concept implementation is bidirectional, i.e. it can
be used for both loading from and storing data to MongoDB using Pig Latin. However,
the part that is the most relevant to our use case outlined in Section B.1, is the part
that loads data from MongoDB and into Pig. For this reason, the other direction shall
be mostly ignored by this report.

A Pig Latin script loads its data using a user-chosen loading function. For example,
this line of code loads data using the BinStorage loading function built into Pig:

data = LOAD ’/path/to/distributed/file’ USING BinStorage() ;

Here, BinStorage is actually a java class that implements the LoadFunc interface, allow-
ing it to be referenced in Pig queries and used by Pig to fetch data. The responsibility
of such a class is twofold:

• to set things up before the query is executed; for example, to check that the input
file exists, and to provide the InputFormat to be used for splitting the data (cf.
later);

• to provide the Pig runtime with individual tuples of data.

The InputFormat that the loader has to provide defines how the data is to be accessed,
how it is scattered across the cluster, and how it can be split in order to run computa-
tions on different splits in parallel. InputFormat is a part of Hadoop, and Hadoop offers
a few standard such InputFormats that work with HDFS files. For example, though
Pig’s BinStorage loader uses a specialized binary encoding, and its other built-in loader
PigStorage uses CSV-like files, both use Hadoop’s FileInputFormat class, as both have
to read from HDFS files. A FileInputFormat can access the HDFS filesystem and find
out how the target file is divided in blocks, as well as the locations of individual blocks.

The responsibility of an InputFormat is thus to logically split the data. It must pro-
vide a list of InputSplits, which are then distributed by Hadoop to different computing
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nodes, each of which can then execute the query on the data from its own InputSplit.
Additionally, each InputSplit can tell Hadoop which nodes its data is actually stored
on, allowing Hadoop to optimize the assignation of tasks according to the location of
data. InputFormat and InputSplit are thus essential for controlling how the execution
of queries is going to be parallelized across the cluster.

Finally, not yet cited is the RecordReader interface. Also provided by the InputFormat,
a RecordReader is responsible for providing a record-oriented view of a particular
InputSplit. For example, Hadoop’s FileInputFormat provides LineRecordReaders;
each LineRecordReader enables line-by-line access to the data in its corresponding
InputSplit.

B.3 Implementation of a MongoDB to Pig adapter

We thus need to define and implement a LoadFunc class, an InputFormat class, an
InputSplit class and a RecordReader class. Our InputFormat will split the data by
exploiting MongoDB’s sharding; our InputSplits will provide the locations of splits
by accessing MongoDB’s replication features; our RecordReader will extract individual
MongoDB objects (documents) out of an InputSplit; finally, our LoadFunc will need to
convert these documents into Pig-compatible Tuples.

Implementing these interfaces was mostly straight-forward. The main programming
difficulty stemmed from the fact that instances of those interfaces are sent back and
forth between the client running the Pig interpreter, the master node of the Hadoop
cluster, and the slave nodes that run MapReduce tasks. Special care sometimes has
to be taken: one needs to figure out what parts of the code are called where, and
ensure that the state of objects stays consistent in between. For example, a property
or variable set by the Pig interpreter will have to be somehow serialized if we need it
to stay available when the object is re-created on a worker node.

Aside from these considerations, two aspects of our implementation deserve partic-
ular attention:

• how our LoadFunc maps MongoDB documents to Pig Latin tuples; and

• how our InputFormat actually splits the data.

We will start by discussing the former point, then move on to the latter.

B.3.1 Converting data

Pig Latin MongoDB
tuple document
field property
bag array

Table B.1: Mapping be-
tween MongoDB and Pig
Latin basic types

MongoDB stores collections of documents; a document
is an object encoded in BSON, a binary-optimized for-
mat with a structure and textual notation similar to
JSON. Documents can thus have complex, nested struc-
tures which is useful for storing real-world data.

Pig Latin treats bags of tuples, a tuple being an or-
dered set of fields, and a bag being an unordered set of
tuples. The fields inside a tuple can be of any types; in
particular, they can themselves be bags or tuples, also
enabling the use of complex nested data structures. The
basic mapping of Pig Latin types to and from MongoDB types thus seems obvious at
first hand (see table B.1).
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Problem Adopted solution
Some BSON data types don’t have Pig
Latin equivalents. Some Pig Latin data
types don’t have BSON equivalents.

Our adapter will fail when encounter-
ing [most of] these types.

BSON properties associate a name with
a value. Pig fields are, by default,
nameless, and can only be referenced
by name if the interpreter knows the
schema of the tuples that contain them.

Our loader will implicitly provide the
schema of the tuples read, by inferring
it from the structure of incoming BSON
documents. Our storer will fail if Pig
can’t provide it with the schema of the
tuples to write.

BSON arrays and collections are non-
uniform: they may contain elements
with different data types or structures.
Pig bags are uniform: they may only
contain tuples, all of which must follow
the same structure.

Our loader assumes BSON arrays and
collections to be uniform. The struc-
ture of composing elements is inferred
by sampling the first element in the ar-
ray or collection.

Table B.2: Data model mismatches & chosen solutions

Things are not so perfect however, as there are some subtle incompatibilities be-
tween these types. Table B.2 lists these incompatibilities along the way they are han-
dled by our implementation. Generally, the solutions adopted have been chosen so that
our storage back-end can be symmetrical, i.e. it has the ability to store data identical
to how it was loaded. Put another way, a Pig Latin “identity” query on some given
MongoDB data must either fail, or perform an exact copy of its input.

In essence, our implementation thus restricts itself to a BSON subset that is fully
compatible with Pig Latin. While this restriction somewhat limits what our adapter
can be used for, we believe that most or all of the common use cases are covered by
this subset.

B.3.2 Splitting data

MongoDB sharding: introduction

As stated earlier, the way that data is divided into logical splits is critical for good Pig
Latin query performance. First, an introduction on how MongoDB sharding works is
in order.

A MongoDB collection can scatter across multiple database nodes, called shards.
One or more central routing server(s) act as proxy(ies): incoming queries are redirected
or propagated to the shard(s) containing the relevant data. Sharding is key-based : when
fist creating the collection, the user will have to choose the sharding key, which is simply
the name a property that all documents in the collection must contain. Documents
are grouped into chunks, which are ranges of values for that property; MongoDB then
assigns chunks to shards.

As an example, let’s say we want to insert a new document into a sharded collection.
Here is what happens then:

1. The client sends the document to save to a MongoDB routing server.
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2. The routing server knows the sharding key for that collection; it looks up the
corresponding value in the document to insert.

3. The routing server finds out which range that value is in, and thus what chunk
the documents belongs to.

4. Finally, the routing server finds out which shard holds that chunk, and forwards
it the insertion request.

The useful thing is that MongoDB can provide its clients with detailed information
about shards and chunks, which allows us to skip through routing servers and access
shards directly, and thus to control query distribution ourselves.

Implementation

The main idea behind our implementation is to follow the sharding information pro-
vided by a MongoDB routing server, and thus to create one InputSplit for each Mon-
goDB chunk (see above). Given a chunk, MongoDB can provide us with the list of all
hosts that have a copy of it. Then, we can access one of these hosts directly to fetch
the data without going through the routing servers anymore. This is especially useful if
these hosts are also configured as Hadoop workers, in which case Pig Latin jobs can be
scheduled to run locally on hosts that have the data, yielding important performance
benefits.

Unfortunately, with large collections, this method is crippled by implementation
details of MongoDB. The problem stems from the following facts:

• Data in MongoDB is stored in no particular order

• Multiple chunks in the same shard are not kept separate

• MongoDB collections are entirely memory-mapped

Together, the first two points implicate that reading a particular chunk from a shard
will require the use of an index, and that random accesses will have to be made all
throughout the shard in order to fetch the whole chunk. Adding the third point means
that, if the shard’s data is sufficiently larger than main memory, fetching a chunk will
involve a large number of page faults, and cause thrashing. MongoDB’s mongostat

utility helps verify that this is what happens.
In order to still be able to perform useful experiments with large collections on

our current configuration, we implemented additional ways of splitting data that do
not suffer from this problem. For example, we have an implementation of InputFormat
that creates one InputSplit for each shard rather than chunk. Each shard is then
read in “natural order”, i.e. in storage order. This enable the host to read the data
sequentially, which does solve the problem; it can not be considered a perfect solution
however, as one InputSplit per shard is not enough for good scalability and failure
tolerance properties.

B.4 Additional optimization possibilities

A few optimizations can be added to the basic MongoDB adapter implementation pre-
sented above. Pig operators can be pushed down to MongoDB; natural data grouping
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present in collections can be exploited; MongoDB’s indexes can be used to provide data
in sorted order, making possible the use of optimized algorithms for certain operations.

B.4.1 Pushing down operators

In addition to the LoadFunc interface, a Pig loader can implement the LoadPushDown

interface. Then, Pig can interrogate our loader to figure out what types of operations
can be pushed down. Finally, if the situation calls for it, Pig will provide the loader
with descriptions of the operations to be pushed down. So far, Pig only allows to push
down projection operations, i.e. when we’re only interested in a subset of the columns
in the input data.

When querying MongoDB, one can ask to return only a defined subset of the fields
from the documents that satisfy the query. We used that feature to implement Pig’s
projection pushdown as described above. We tested our implementation by running a
query that runs through a 500-columns-wide table, from which only two columns are
actually used. When using projection pushdown, we measured an improvement of over
300% in running time.

B.4.2 Collected grouping

A Pig loader may also implement the CollectableLoadFunc interface. This tells Pig
that data will be split such that all instances of any particular value of a given field will
appear in the same InputSplit. This allows Pig users to ask for a “collected” grouping:
an alternate algorithm for “group by” operations that takes place entirely in the Map
phase of a MapReduce jobs.

This is trivial to add to our implementation if the field that has to be collected
happens to be the sharding key for the MongoDB collection. Unfortunately, Pig cur-
rently offers no obvious way to verify that, or even to specify what field should actually
be collected.

Performance gains were not measured, as the performance problems cited in Section
B.3.2 prevent us from easily designing a suitable test.

B.4.3 Exploiting indexes

Finally, a Pig loader can implement the IndexableLoadFunc and OrderedLoadFunc in-
terfaces. The former tells Pig that data will be read in sorted order, and allows Pig
to seek to an arbitrary position among that order. The latter enables Pig to compare
between InputSplits: indeed, if data was sorted before being split, then splits have a
position relative to each other.

When performing a “join” or “cogroup” operation, if the data comes from loaders
which implement these interfaces, then the user can opt for a “merge” join or cogroup,
that uses the fact that data is ordered to perform the joining or grouping efficiently in
the Map phase of a MapReduce job.

Once again, these interfaces are easily implemented if the sorting key corresponds
to the MongoDB collection’s sharding key. And once again, Pig provides no obvious
way for us to know which key it wants data to be sorted on. Our implementation thus
assumes that the user will only perform merge joins or cogroups on sharding keys, and
will not work correctly otherwise.
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Again, our issue with MongoDB’s performance with large collections prevents us
from designing a suitable benchmarking test.

B.4.4 Associated Pig design issues

The last three interfaces that we introduced, CollactableLoadFunc, IndexableLoadFunc
and OrderedLoadFunc all have design issues that prevent them from being more useful.
First of all, as mentioned several times above, Pig doesn’t tell us what field need to
be collected or sorted. In existing implementation of those interfaces, this seems to be
determined by tight interaction between the loader and the operator that implements
the actual grouping or joining.

More generally, these operators interact with the loaders directly and in a non-
standard way. For example the IndexableLoadFunc as used by the merge join operator
follows a completely different code path than a “normal” loader; different methods get
called in a different order. Reading and understanding the merge join code is thus
actually necessary to implement our loader, which is not how things should be.

Ideally, Pig should ask the loader what fields of the input it can collect or sort. Then,
it should itself decide which algorithms to use according to the loader’s capabilities.
Most of all, these optimized operators and their specialized loaders should be designed
so that they fit into the system, rather than as a hack on top of it.

B.5 Conclusion

During this internship, we studied Pig’s storage abstraction layer, discussed the possi-
bility of implementing it over other types of storage engines, provided such an imple-
mentation over MongoDB, and documented the associated quirks.

We have seen that Pig provides relatively good support for easily plugging one’s
own storage back-end. We have outlined why not any database engine is suitable as a
storage back-end for Pig Latin. Finally, we’ve explained how additional optimizations
can be made available to Pig when using advanced storage back-ends that can guarantee
assumptions about the data, such as sorting order; however, we’ve also shown how Pig’s
abstraction layer over these advanced features is still immature and awkward.
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